基于关节扭矩估计和摩擦补偿的机器人机械手自适应快速终端滑模控制

IF 3.2 3区 计算机科学 Q2 AUTOMATION & CONTROL SYSTEMS
Shunjing Hu, Yi Wan, Xichang Liang
{"title":"基于关节扭矩估计和摩擦补偿的机器人机械手自适应快速终端滑模控制","authors":"Shunjing Hu,&nbsp;Yi Wan,&nbsp;Xichang Liang","doi":"10.1002/rnc.7624","DOIUrl":null,"url":null,"abstract":"<p>In this work, an adaptive fast terminal sliding mode control (AFSMC) approach based on joint torque estimation and friction compensation is proposed to enhance the trajectory tracking accuracy of robotic manipulators under variable load conditions. The joint torque estimation utilizes an improved harmonic drive compliance model and adaptive low-pass filtering, and friction compensation employs a hybrid model accounting for velocity and load torque effects. These compensations reduce the upper bound of the uncertainty, while AFSMC further reduces dependency on upper uncertainty bounds and minimizes the chattering. The stability analysis using the Lyapunov method confirms the effectiveness of this approach. Experimental results demonstrate that the proposed controller achieves smaller root mean square and maximum error of trajectory tracking, thus significantly improving trajectory tracking accuracy under variable load conditions.</p>","PeriodicalId":50291,"journal":{"name":"International Journal of Robust and Nonlinear Control","volume":"34 18","pages":"12223-12238"},"PeriodicalIF":3.2000,"publicationDate":"2024-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Adaptive fast terminal sliding mode control of robotic manipulators based on joint torque estimation and friction compensation\",\"authors\":\"Shunjing Hu,&nbsp;Yi Wan,&nbsp;Xichang Liang\",\"doi\":\"10.1002/rnc.7624\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In this work, an adaptive fast terminal sliding mode control (AFSMC) approach based on joint torque estimation and friction compensation is proposed to enhance the trajectory tracking accuracy of robotic manipulators under variable load conditions. The joint torque estimation utilizes an improved harmonic drive compliance model and adaptive low-pass filtering, and friction compensation employs a hybrid model accounting for velocity and load torque effects. These compensations reduce the upper bound of the uncertainty, while AFSMC further reduces dependency on upper uncertainty bounds and minimizes the chattering. The stability analysis using the Lyapunov method confirms the effectiveness of this approach. Experimental results demonstrate that the proposed controller achieves smaller root mean square and maximum error of trajectory tracking, thus significantly improving trajectory tracking accuracy under variable load conditions.</p>\",\"PeriodicalId\":50291,\"journal\":{\"name\":\"International Journal of Robust and Nonlinear Control\",\"volume\":\"34 18\",\"pages\":\"12223-12238\"},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2024-09-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Robust and Nonlinear Control\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/rnc.7624\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"AUTOMATION & CONTROL SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Robust and Nonlinear Control","FirstCategoryId":"94","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/rnc.7624","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

本研究提出了一种基于关节扭矩估计和摩擦补偿的自适应快速终端滑模控制(AFSMC)方法,以提高机器人机械手在可变负载条件下的轨迹跟踪精度。关节扭矩估算采用了改进的谐波驱动顺应性模型和自适应低通滤波,摩擦补偿则采用了考虑速度和负载扭矩效应的混合模型。这些补偿降低了不确定性的上限,而 AFSMC 则进一步降低了对不确定性上限的依赖,并最大限度地减少了颤振。利用 Lyapunov 方法进行的稳定性分析证实了这种方法的有效性。实验结果表明,所提出的控制器实现了更小的均方根误差和最大轨迹跟踪误差,从而显著提高了变负载条件下的轨迹跟踪精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Adaptive fast terminal sliding mode control of robotic manipulators based on joint torque estimation and friction compensation

In this work, an adaptive fast terminal sliding mode control (AFSMC) approach based on joint torque estimation and friction compensation is proposed to enhance the trajectory tracking accuracy of robotic manipulators under variable load conditions. The joint torque estimation utilizes an improved harmonic drive compliance model and adaptive low-pass filtering, and friction compensation employs a hybrid model accounting for velocity and load torque effects. These compensations reduce the upper bound of the uncertainty, while AFSMC further reduces dependency on upper uncertainty bounds and minimizes the chattering. The stability analysis using the Lyapunov method confirms the effectiveness of this approach. Experimental results demonstrate that the proposed controller achieves smaller root mean square and maximum error of trajectory tracking, thus significantly improving trajectory tracking accuracy under variable load conditions.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
International Journal of Robust and Nonlinear Control
International Journal of Robust and Nonlinear Control 工程技术-工程:电子与电气
CiteScore
6.70
自引率
20.50%
发文量
505
审稿时长
2.7 months
期刊介绍: Papers that do not include an element of robust or nonlinear control and estimation theory will not be considered by the journal, and all papers will be expected to include significant novel content. The focus of the journal is on model based control design approaches rather than heuristic or rule based methods. Papers on neural networks will have to be of exceptional novelty to be considered for the journal.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信