算术级数中的质数大地定理

Pub Date : 2024-09-14 DOI:10.1093/imrn/rnae198
Dimitrios Chatzakos, Gergely Harcos, Ikuya Kaneko
{"title":"算术级数中的质数大地定理","authors":"Dimitrios Chatzakos, Gergely Harcos, Ikuya Kaneko","doi":"10.1093/imrn/rnae198","DOIUrl":null,"url":null,"abstract":"We address the prime geodesic theorem in arithmetic progressions and resolve conjectures of Golovchanskiĭ–Smotrov (1999). In particular, we prove that the traces of closed geodesics on the modular surface do not equidistribute in the reduced residue classes of a given modulus.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-09-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The Prime Geodesic Theorem in Arithmetic Progressions\",\"authors\":\"Dimitrios Chatzakos, Gergely Harcos, Ikuya Kaneko\",\"doi\":\"10.1093/imrn/rnae198\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We address the prime geodesic theorem in arithmetic progressions and resolve conjectures of Golovchanskiĭ–Smotrov (1999). In particular, we prove that the traces of closed geodesics on the modular surface do not equidistribute in the reduced residue classes of a given modulus.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2024-09-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1093/imrn/rnae198\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1093/imrn/rnae198","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们讨论了算术级数中的素大地定理,并解决了 Golovchanskiĭ-Smotrov (1999) 的猜想。特别是,我们证明了在给定模数的还原残差类中,模数面上闭合大地线的轨迹不等分布。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
The Prime Geodesic Theorem in Arithmetic Progressions
We address the prime geodesic theorem in arithmetic progressions and resolve conjectures of Golovchanskiĭ–Smotrov (1999). In particular, we prove that the traces of closed geodesics on the modular surface do not equidistribute in the reduced residue classes of a given modulus.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信