模拟视觉搜索对层次结构的合理适应

Saku Sourulahti, Christian P Janssen, Jussi PP Jokinen
{"title":"模拟视觉搜索对层次结构的合理适应","authors":"Saku Sourulahti, Christian P Janssen, Jussi PP Jokinen","doi":"arxiv-2409.08967","DOIUrl":null,"url":null,"abstract":"Efficient attention deployment in visual search is limited by human visual\nmemory, yet this limitation can be offset by exploiting the environment's\nstructure. This paper introduces a computational cognitive model that simulates\nhow the human visual system uses visual hierarchies to prevent refixations in\nsequential attention deployment. The model adopts computational rationality,\npositing behaviors as adaptations to cognitive constraints and environmental\nstructures. In contrast to earlier models that predict search performance for\nhierarchical information, our model does not include predefined assumptions\nabout particular search strategies. Instead, our model's search strategy\nemerges as a result of adapting to the environment through reinforcement\nlearning algorithms. In an experiment with human participants we test the\nmodel's prediction that structured environments reduce visual search times\ncompared to random tasks. Our model's predictions correspond well with human\nsearch performance across various set sizes for both structured and\nunstructured visual layouts. Our work improves understanding of the adaptive\nnature of visual search in hierarchically structured environments and informs\nthe design of optimized search spaces.","PeriodicalId":501541,"journal":{"name":"arXiv - CS - Human-Computer Interaction","volume":"15 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Modeling Rational Adaptation of Visual Search to Hierarchical Structures\",\"authors\":\"Saku Sourulahti, Christian P Janssen, Jussi PP Jokinen\",\"doi\":\"arxiv-2409.08967\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Efficient attention deployment in visual search is limited by human visual\\nmemory, yet this limitation can be offset by exploiting the environment's\\nstructure. This paper introduces a computational cognitive model that simulates\\nhow the human visual system uses visual hierarchies to prevent refixations in\\nsequential attention deployment. The model adopts computational rationality,\\npositing behaviors as adaptations to cognitive constraints and environmental\\nstructures. In contrast to earlier models that predict search performance for\\nhierarchical information, our model does not include predefined assumptions\\nabout particular search strategies. Instead, our model's search strategy\\nemerges as a result of adapting to the environment through reinforcement\\nlearning algorithms. In an experiment with human participants we test the\\nmodel's prediction that structured environments reduce visual search times\\ncompared to random tasks. Our model's predictions correspond well with human\\nsearch performance across various set sizes for both structured and\\nunstructured visual layouts. Our work improves understanding of the adaptive\\nnature of visual search in hierarchically structured environments and informs\\nthe design of optimized search spaces.\",\"PeriodicalId\":501541,\"journal\":{\"name\":\"arXiv - CS - Human-Computer Interaction\",\"volume\":\"15 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - CS - Human-Computer Interaction\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.08967\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Human-Computer Interaction","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.08967","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在视觉搜索中,高效的注意力调配受到人类视觉记忆的限制,然而这种限制可以通过利用环境结构来抵消。本文介绍了一种计算认知模型,该模型模拟了人类视觉系统如何利用视觉层次结构来防止在随后的注意力部署中出现混淆。该模型采用计算理性,将行为假设为对认知约束和环境结构的适应。与早期预测分层信息搜索性能的模型不同,我们的模型不包含关于特定搜索策略的预定义假设。相反,我们模型的搜索策略是通过强化学习算法来适应环境的结果。在一项以人类参与者为对象的实验中,我们验证了模型的预测,即与随机任务相比,结构化环境能缩短视觉搜索时间。我们的模型预测结果与人类在不同大小的集合中对结构化和非结构化视觉布局的搜索表现非常吻合。我们的工作加深了人们对分层结构环境中视觉搜索适应性的理解,并为优化搜索空间的设计提供了参考。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Modeling Rational Adaptation of Visual Search to Hierarchical Structures
Efficient attention deployment in visual search is limited by human visual memory, yet this limitation can be offset by exploiting the environment's structure. This paper introduces a computational cognitive model that simulates how the human visual system uses visual hierarchies to prevent refixations in sequential attention deployment. The model adopts computational rationality, positing behaviors as adaptations to cognitive constraints and environmental structures. In contrast to earlier models that predict search performance for hierarchical information, our model does not include predefined assumptions about particular search strategies. Instead, our model's search strategy emerges as a result of adapting to the environment through reinforcement learning algorithms. In an experiment with human participants we test the model's prediction that structured environments reduce visual search times compared to random tasks. Our model's predictions correspond well with human search performance across various set sizes for both structured and unstructured visual layouts. Our work improves understanding of the adaptive nature of visual search in hierarchically structured environments and informs the design of optimized search spaces.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信