具有瑞利系统极限周期的精炼全局波因卡-本迪克森环面

IF 0.8 4区 数学 Q2 MATHEMATICS
Y. Li, A. A. Grin, A. V. Kuzmich
{"title":"具有瑞利系统极限周期的精炼全局波因卡-本迪克森环面","authors":"Y. Li, A. A. Grin, A. V. Kuzmich","doi":"10.1134/s0012266124060028","DOIUrl":null,"url":null,"abstract":"<h3 data-test=\"abstract-sub-heading\">Abstract</h3><p> New methods for constructing two Dulac–Cherkas functions are developed using which a\nbetter, depending on the parameter <span>\\(\\lambda &gt;0\\)</span>, inner\nboundary of the Poincaré–Bendixson annulus <span>\\(A(\\lambda ) \\)</span> is found for the Rayleigh system. A procedure is\nproposed for directly finding a polynomial whose zero level set contains a transversal oval used as\nthe outer boundary of <span>\\(A(\\lambda )\\)</span>. An\ninterval for <span>\\(\\lambda \\)</span> is specified with which the best outer boundary of\nthe annulus <span>\\( A(\\lambda )\\)</span> is a closed contour composed of two\narcs of the constructed oval and two arcs of unclosed curves of the zero level set of one of the\nDulac–Cherkas functions. Thus, a refined global Poincaré–Bendixson annulus for the\nlimit cycle of the Rayleigh system is presented.\n</p>","PeriodicalId":50580,"journal":{"name":"Differential Equations","volume":"103 1","pages":""},"PeriodicalIF":0.8000,"publicationDate":"2024-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Refined Global Poincaré–Bendixson Annulus with the Limit Cycle of the Rayleigh System\",\"authors\":\"Y. Li, A. A. Grin, A. V. Kuzmich\",\"doi\":\"10.1134/s0012266124060028\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<h3 data-test=\\\"abstract-sub-heading\\\">Abstract</h3><p> New methods for constructing two Dulac–Cherkas functions are developed using which a\\nbetter, depending on the parameter <span>\\\\(\\\\lambda &gt;0\\\\)</span>, inner\\nboundary of the Poincaré–Bendixson annulus <span>\\\\(A(\\\\lambda ) \\\\)</span> is found for the Rayleigh system. A procedure is\\nproposed for directly finding a polynomial whose zero level set contains a transversal oval used as\\nthe outer boundary of <span>\\\\(A(\\\\lambda )\\\\)</span>. An\\ninterval for <span>\\\\(\\\\lambda \\\\)</span> is specified with which the best outer boundary of\\nthe annulus <span>\\\\( A(\\\\lambda )\\\\)</span> is a closed contour composed of two\\narcs of the constructed oval and two arcs of unclosed curves of the zero level set of one of the\\nDulac–Cherkas functions. Thus, a refined global Poincaré–Bendixson annulus for the\\nlimit cycle of the Rayleigh system is presented.\\n</p>\",\"PeriodicalId\":50580,\"journal\":{\"name\":\"Differential Equations\",\"volume\":\"103 1\",\"pages\":\"\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2024-09-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Differential Equations\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1134/s0012266124060028\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Differential Equations","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1134/s0012266124060028","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

摘要 提出了构造两个杜拉克-切尔卡斯函数的新方法,利用这些方法,可以根据参数(((lambda >0\))为瑞利系统找到更好的Poincaré-Bendixson环面(A(\lambda ) \)的内边界。提出了一个直接找到多项式的程序,该多项式的零级集包含一个用作(A(\lambda))外边界的横向椭圆。为 \(\lambda \)指定了一个椭圆,环形 \( A(\lambda )\) 的最佳外边界是由所建椭圆的两条弧和杜拉克-切尔卡斯函数之一的零级集的未封闭曲线的两条弧组成的封闭轮廓。因此,我们提出了雷利系统极限周期的精炼全局 Poincaré-Bendixson 环面。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

A Refined Global Poincaré–Bendixson Annulus with the Limit Cycle of the Rayleigh System

A Refined Global Poincaré–Bendixson Annulus with the Limit Cycle of the Rayleigh System

Abstract

New methods for constructing two Dulac–Cherkas functions are developed using which a better, depending on the parameter \(\lambda >0\), inner boundary of the Poincaré–Bendixson annulus \(A(\lambda ) \) is found for the Rayleigh system. A procedure is proposed for directly finding a polynomial whose zero level set contains a transversal oval used as the outer boundary of \(A(\lambda )\). An interval for \(\lambda \) is specified with which the best outer boundary of the annulus \( A(\lambda )\) is a closed contour composed of two arcs of the constructed oval and two arcs of unclosed curves of the zero level set of one of the Dulac–Cherkas functions. Thus, a refined global Poincaré–Bendixson annulus for the limit cycle of the Rayleigh system is presented.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Differential Equations
Differential Equations 数学-数学
CiteScore
1.30
自引率
33.30%
发文量
72
审稿时长
3-8 weeks
期刊介绍: Differential Equations is a journal devoted to differential equations and the associated integral equations. The journal publishes original articles by authors from all countries and accepts manuscripts in English and Russian. The topics of the journal cover ordinary differential equations, partial differential equations, spectral theory of differential operators, integral and integral–differential equations, difference equations and their applications in control theory, mathematical modeling, shell theory, informatics, and oscillation theory. The journal is published in collaboration with the Department of Mathematics and the Division of Nanotechnologies and Information Technologies of the Russian Academy of Sciences and the Institute of Mathematics of the National Academy of Sciences of Belarus.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信