用弛豫时标分解热力学几何中的度量张量

Zhen Li, Yuki Izumida
{"title":"用弛豫时标分解热力学几何中的度量张量","authors":"Zhen Li, Yuki Izumida","doi":"arxiv-2409.08546","DOIUrl":null,"url":null,"abstract":"Usually, the Carnot efficiency cannot be achieved with finite power due to\nthe quasi-static process, which requires infinitely slow operation speed. It is\nnecessary to tolerate extra dissipation to obtain finite power. In the\nslow-driving linear response regime, this dissipation can be described as\ndissipated availability in a geometrical way. The key to this geometrical\nmethod is the thermodynamic length characterized by a metric tensor defined on\nthe space of control variables. In this paper, we show that the metric tensor\nfor Langevin dynamics can be decomposed in terms of the relaxation times of a\nsystem. As an application of the decomposition of the metric tensor, we show\nthat it is possible to achieve Carnot efficiency at finite power by taking the\nvanishing limit of relaxation times without breaking trade-off relations\nbetween efficiency and power.","PeriodicalId":501520,"journal":{"name":"arXiv - PHYS - Statistical Mechanics","volume":"17 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Decomposition of metric tensor in thermodynamic geometry in terms of relaxation timescales\",\"authors\":\"Zhen Li, Yuki Izumida\",\"doi\":\"arxiv-2409.08546\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Usually, the Carnot efficiency cannot be achieved with finite power due to\\nthe quasi-static process, which requires infinitely slow operation speed. It is\\nnecessary to tolerate extra dissipation to obtain finite power. In the\\nslow-driving linear response regime, this dissipation can be described as\\ndissipated availability in a geometrical way. The key to this geometrical\\nmethod is the thermodynamic length characterized by a metric tensor defined on\\nthe space of control variables. In this paper, we show that the metric tensor\\nfor Langevin dynamics can be decomposed in terms of the relaxation times of a\\nsystem. As an application of the decomposition of the metric tensor, we show\\nthat it is possible to achieve Carnot efficiency at finite power by taking the\\nvanishing limit of relaxation times without breaking trade-off relations\\nbetween efficiency and power.\",\"PeriodicalId\":501520,\"journal\":{\"name\":\"arXiv - PHYS - Statistical Mechanics\",\"volume\":\"17 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - PHYS - Statistical Mechanics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.08546\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - PHYS - Statistical Mechanics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.08546","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

通常情况下,由于准静态过程需要无限慢的运行速度,有限功率无法达到卡诺效率。为了获得有限功率,必须容忍额外的耗散。在低速驱动线性响应机制中,这种耗散可以用几何方法描述为耗散可用性。这种几何方法的关键在于以控制变量空间上定义的度量张量为特征的热力学长度。在本文中,我们展示了朗格文动力学的度量张量可以用系统的弛豫时间来分解。作为度量张量分解的一个应用,我们证明了在不打破效率和功率之间权衡关系的情况下,通过取弛豫时间的消失极限,有可能在有限功率下实现卡诺效率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Decomposition of metric tensor in thermodynamic geometry in terms of relaxation timescales
Usually, the Carnot efficiency cannot be achieved with finite power due to the quasi-static process, which requires infinitely slow operation speed. It is necessary to tolerate extra dissipation to obtain finite power. In the slow-driving linear response regime, this dissipation can be described as dissipated availability in a geometrical way. The key to this geometrical method is the thermodynamic length characterized by a metric tensor defined on the space of control variables. In this paper, we show that the metric tensor for Langevin dynamics can be decomposed in terms of the relaxation times of a system. As an application of the decomposition of the metric tensor, we show that it is possible to achieve Carnot efficiency at finite power by taking the vanishing limit of relaxation times without breaking trade-off relations between efficiency and power.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信