自由冷却多组分颗粒混合物中入侵者的均方位移

Rubén Gómez González, Santos Bravo Yuste, Vicente Garzó
{"title":"自由冷却多组分颗粒混合物中入侵者的均方位移","authors":"Rubén Gómez González, Santos Bravo Yuste, Vicente Garzó","doi":"arxiv-2409.08726","DOIUrl":null,"url":null,"abstract":"The mean square displacement (MSD) of intruders (tracer particles) immersed\nin a multicomponent granular mixture made up of smooth inelastic hard spheres\nin a homogeneous cooling state is explicitly computed. The multicomponent\ngranular mixture is constituted by $s$ species with different masses,\ndiameters, and coefficients of restitution. In the hydrodynamic regime, the\ntime decay of the granular temperature of the mixture gives rise to a time\ndecay of the intruder's diffusion coefficient $D_0$. The corresponding MSD of\nthe intruder is determined by integrating the corresponding diffusion equation.\nAs expected from previous works on binary mixtures, we find a logarithmic time\ndependence of the MSD which involves the coefficient $D_0$. To analyze the\ndependence of the MSD on the parameter space of the system, the diffusion\ncoefficient is explicitly determined by considering the so-called second Sonine\napproximation (two terms in the Sonine polynomial expansion of the intruder's\ndistribution function). The theoretical results for $D_0$ are compared with\nthose obtained by numerically solving the Boltzmann equation by means of the\ndirect simulation Monte Carlo method. We show that the second Sonine\napproximation improves the predictions of the first Sonine approximation,\nespecially when the intruders are much lighter than the particles of the\ngranular mixture. In the long-time limit, our results for the MSD agree with\nthose recently obtained by Bodrova [Phys. Rev. E \\textbf{109}, 024903 (2024)]\nwhen $D_0$ is determined by considering the first Sonine approximation.","PeriodicalId":501520,"journal":{"name":"arXiv - PHYS - Statistical Mechanics","volume":"193 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Mean square displacement of intruders in freely cooling multicomponent granular mixtures\",\"authors\":\"Rubén Gómez González, Santos Bravo Yuste, Vicente Garzó\",\"doi\":\"arxiv-2409.08726\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The mean square displacement (MSD) of intruders (tracer particles) immersed\\nin a multicomponent granular mixture made up of smooth inelastic hard spheres\\nin a homogeneous cooling state is explicitly computed. The multicomponent\\ngranular mixture is constituted by $s$ species with different masses,\\ndiameters, and coefficients of restitution. In the hydrodynamic regime, the\\ntime decay of the granular temperature of the mixture gives rise to a time\\ndecay of the intruder's diffusion coefficient $D_0$. The corresponding MSD of\\nthe intruder is determined by integrating the corresponding diffusion equation.\\nAs expected from previous works on binary mixtures, we find a logarithmic time\\ndependence of the MSD which involves the coefficient $D_0$. To analyze the\\ndependence of the MSD on the parameter space of the system, the diffusion\\ncoefficient is explicitly determined by considering the so-called second Sonine\\napproximation (two terms in the Sonine polynomial expansion of the intruder's\\ndistribution function). The theoretical results for $D_0$ are compared with\\nthose obtained by numerically solving the Boltzmann equation by means of the\\ndirect simulation Monte Carlo method. We show that the second Sonine\\napproximation improves the predictions of the first Sonine approximation,\\nespecially when the intruders are much lighter than the particles of the\\ngranular mixture. In the long-time limit, our results for the MSD agree with\\nthose recently obtained by Bodrova [Phys. Rev. E \\\\textbf{109}, 024903 (2024)]\\nwhen $D_0$ is determined by considering the first Sonine approximation.\",\"PeriodicalId\":501520,\"journal\":{\"name\":\"arXiv - PHYS - Statistical Mechanics\",\"volume\":\"193 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - PHYS - Statistical Mechanics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.08726\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - PHYS - Statistical Mechanics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.08726","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在均匀冷却状态下,明确计算了浸入由光滑无弹性硬球组成的多组分粒状混合物中的入侵者(示踪粒子)的均方位移(MSD)。多组分颗粒混合物由具有不同质量、直径和回复系数的 $s$ 物种构成。在流体力学体系中,混合物颗粒温度的时间衰减引起入侵者扩散系数 $D_0$ 的时间衰减。正如以前研究二元混合物时所预期的那样,我们发现 MSD 的时间依赖性与系数 $D_0$ 呈对数关系。为了分析 MSD 对系统参数空间的依赖性,我们通过考虑所谓的第二 Sonine 近似值(入侵者分布函数的 Sonine 多项式展开中的两个项)来明确确定扩散系数。我们将 $D_0$ 的理论结果与通过直接模拟蒙特卡罗方法数值求解玻尔兹曼方程得到的结果进行了比较。结果表明,第二索尼近似改进了第一索尼近似的预测结果,尤其是当入侵者比粒状混合物的颗粒轻得多时。在长时间极限中,我们的MSD结果与Bodrova [Phys. Rev. E \textbf{109}, 024903 (2024)]最近通过考虑第一索宁近似确定$D_0$时得到的结果一致。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Mean square displacement of intruders in freely cooling multicomponent granular mixtures
The mean square displacement (MSD) of intruders (tracer particles) immersed in a multicomponent granular mixture made up of smooth inelastic hard spheres in a homogeneous cooling state is explicitly computed. The multicomponent granular mixture is constituted by $s$ species with different masses, diameters, and coefficients of restitution. In the hydrodynamic regime, the time decay of the granular temperature of the mixture gives rise to a time decay of the intruder's diffusion coefficient $D_0$. The corresponding MSD of the intruder is determined by integrating the corresponding diffusion equation. As expected from previous works on binary mixtures, we find a logarithmic time dependence of the MSD which involves the coefficient $D_0$. To analyze the dependence of the MSD on the parameter space of the system, the diffusion coefficient is explicitly determined by considering the so-called second Sonine approximation (two terms in the Sonine polynomial expansion of the intruder's distribution function). The theoretical results for $D_0$ are compared with those obtained by numerically solving the Boltzmann equation by means of the direct simulation Monte Carlo method. We show that the second Sonine approximation improves the predictions of the first Sonine approximation, especially when the intruders are much lighter than the particles of the granular mixture. In the long-time limit, our results for the MSD agree with those recently obtained by Bodrova [Phys. Rev. E \textbf{109}, 024903 (2024)] when $D_0$ is determined by considering the first Sonine approximation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信