多倍异常点的缠绕拓扑学

Tsuneya Yoshida, J. Lukas K. König, Lukas Rødland, Emil J. Bergholtz, Marcus Stålhammar
{"title":"多倍异常点的缠绕拓扑学","authors":"Tsuneya Yoshida, J. Lukas K. König, Lukas Rødland, Emil J. Bergholtz, Marcus Stålhammar","doi":"arxiv-2409.09153","DOIUrl":null,"url":null,"abstract":"Despite their ubiquity, systematic characterization of multifold exceptional\npoints, $n$-fold exceptional points (EP$n$s), remains a significant unsolved\nproblem. In this article, we characterize Abelian topology of eigenvalues for\ngeneric EP$n$s and symmetry-protected EP$n$s for arbitrary $n$. The former and\nthe latter emerge in a $(2n-2)$- and $(n-1)$-dimensional parameter space,\nrespectively. By introducing resultant winding numbers, we elucidate that these\nEP$n$s are stable due to topology of a map from a base space (momentum or\nparameter space) to a sphere defined by these resultants. Our framework implies\nfundamental doubling theorems of both generic EP$n$s and symmetry-protected\nEP$n$s in $n$-band models.","PeriodicalId":501520,"journal":{"name":"arXiv - PHYS - Statistical Mechanics","volume":"39 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Winding Topology of Multifold Exceptional Points\",\"authors\":\"Tsuneya Yoshida, J. Lukas K. König, Lukas Rødland, Emil J. Bergholtz, Marcus Stålhammar\",\"doi\":\"arxiv-2409.09153\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Despite their ubiquity, systematic characterization of multifold exceptional\\npoints, $n$-fold exceptional points (EP$n$s), remains a significant unsolved\\nproblem. In this article, we characterize Abelian topology of eigenvalues for\\ngeneric EP$n$s and symmetry-protected EP$n$s for arbitrary $n$. The former and\\nthe latter emerge in a $(2n-2)$- and $(n-1)$-dimensional parameter space,\\nrespectively. By introducing resultant winding numbers, we elucidate that these\\nEP$n$s are stable due to topology of a map from a base space (momentum or\\nparameter space) to a sphere defined by these resultants. Our framework implies\\nfundamental doubling theorems of both generic EP$n$s and symmetry-protected\\nEP$n$s in $n$-band models.\",\"PeriodicalId\":501520,\"journal\":{\"name\":\"arXiv - PHYS - Statistical Mechanics\",\"volume\":\"39 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - PHYS - Statistical Mechanics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.09153\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - PHYS - Statistical Mechanics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.09153","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

尽管多折例外点($n$-fold exceptional points,EP$n$s)无处不在,但它们的系统表征仍然是一个重要的未决问题。在这篇文章中,我们描述了对于任意 $n$ 的泛函 EP$n$s 和对称保护 EP$n$s 的特征值的阿贝尔拓扑。前者和后者分别出现在$(2n-2)$和$(n-1)$维的参数空间中。通过引入结果缠绕数,我们阐明了这些 EP$n$s 由于从基底空间(动量或参数空间)到由这些结果定义的球面的映射的拓扑而具有稳定性。我们的框架隐含了一般 EP$n$s 和 $n$ 带模型中受对称保护的 EP$n$s 的基本加倍定理。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Winding Topology of Multifold Exceptional Points
Despite their ubiquity, systematic characterization of multifold exceptional points, $n$-fold exceptional points (EP$n$s), remains a significant unsolved problem. In this article, we characterize Abelian topology of eigenvalues for generic EP$n$s and symmetry-protected EP$n$s for arbitrary $n$. The former and the latter emerge in a $(2n-2)$- and $(n-1)$-dimensional parameter space, respectively. By introducing resultant winding numbers, we elucidate that these EP$n$s are stable due to topology of a map from a base space (momentum or parameter space) to a sphere defined by these resultants. Our framework implies fundamental doubling theorems of both generic EP$n$s and symmetry-protected EP$n$s in $n$-band models.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信