Tsuneya Yoshida, J. Lukas K. König, Lukas Rødland, Emil J. Bergholtz, Marcus Stålhammar
{"title":"多倍异常点的缠绕拓扑学","authors":"Tsuneya Yoshida, J. Lukas K. König, Lukas Rødland, Emil J. Bergholtz, Marcus Stålhammar","doi":"arxiv-2409.09153","DOIUrl":null,"url":null,"abstract":"Despite their ubiquity, systematic characterization of multifold exceptional\npoints, $n$-fold exceptional points (EP$n$s), remains a significant unsolved\nproblem. In this article, we characterize Abelian topology of eigenvalues for\ngeneric EP$n$s and symmetry-protected EP$n$s for arbitrary $n$. The former and\nthe latter emerge in a $(2n-2)$- and $(n-1)$-dimensional parameter space,\nrespectively. By introducing resultant winding numbers, we elucidate that these\nEP$n$s are stable due to topology of a map from a base space (momentum or\nparameter space) to a sphere defined by these resultants. Our framework implies\nfundamental doubling theorems of both generic EP$n$s and symmetry-protected\nEP$n$s in $n$-band models.","PeriodicalId":501520,"journal":{"name":"arXiv - PHYS - Statistical Mechanics","volume":"39 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Winding Topology of Multifold Exceptional Points\",\"authors\":\"Tsuneya Yoshida, J. Lukas K. König, Lukas Rødland, Emil J. Bergholtz, Marcus Stålhammar\",\"doi\":\"arxiv-2409.09153\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Despite their ubiquity, systematic characterization of multifold exceptional\\npoints, $n$-fold exceptional points (EP$n$s), remains a significant unsolved\\nproblem. In this article, we characterize Abelian topology of eigenvalues for\\ngeneric EP$n$s and symmetry-protected EP$n$s for arbitrary $n$. The former and\\nthe latter emerge in a $(2n-2)$- and $(n-1)$-dimensional parameter space,\\nrespectively. By introducing resultant winding numbers, we elucidate that these\\nEP$n$s are stable due to topology of a map from a base space (momentum or\\nparameter space) to a sphere defined by these resultants. Our framework implies\\nfundamental doubling theorems of both generic EP$n$s and symmetry-protected\\nEP$n$s in $n$-band models.\",\"PeriodicalId\":501520,\"journal\":{\"name\":\"arXiv - PHYS - Statistical Mechanics\",\"volume\":\"39 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - PHYS - Statistical Mechanics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.09153\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - PHYS - Statistical Mechanics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.09153","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Despite their ubiquity, systematic characterization of multifold exceptional
points, $n$-fold exceptional points (EP$n$s), remains a significant unsolved
problem. In this article, we characterize Abelian topology of eigenvalues for
generic EP$n$s and symmetry-protected EP$n$s for arbitrary $n$. The former and
the latter emerge in a $(2n-2)$- and $(n-1)$-dimensional parameter space,
respectively. By introducing resultant winding numbers, we elucidate that these
EP$n$s are stable due to topology of a map from a base space (momentum or
parameter space) to a sphere defined by these resultants. Our framework implies
fundamental doubling theorems of both generic EP$n$s and symmetry-protected
EP$n$s in $n$-band models.