学习分子热力学和动力学的图神经网络-状态预测信息瓶颈(GNN-SPIB)方法

Ziyue Zou, Dedi Wang, Pratyush Tiwary
{"title":"学习分子热力学和动力学的图神经网络-状态预测信息瓶颈(GNN-SPIB)方法","authors":"Ziyue Zou, Dedi Wang, Pratyush Tiwary","doi":"arxiv-2409.11843","DOIUrl":null,"url":null,"abstract":"Molecular dynamics simulations offer detailed insights into atomic motions\nbut face timescale limitations. Enhanced sampling methods have addressed these\nchallenges but even with machine learning, they often rely on pre-selected\nexpert-based features. In this work, we present the Graph Neural Network-State\nPredictive Information Bottleneck (GNN-SPIB) framework, which combines graph\nneural networks and the State Predictive Information Bottleneck to\nautomatically learn low-dimensional representations directly from atomic\ncoordinates. Tested on three benchmark systems, our approach predicts essential\nstructural, thermodynamic and kinetic information for slow processes,\ndemonstrating robustness across diverse systems. The method shows promise for\ncomplex systems, enabling effective enhanced sampling without requiring\npre-defined reaction coordinates or input features.","PeriodicalId":501520,"journal":{"name":"arXiv - PHYS - Statistical Mechanics","volume":"4 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Graph Neural Network-State Predictive Information Bottleneck (GNN-SPIB) approach for learning molecular thermodynamics and kinetics\",\"authors\":\"Ziyue Zou, Dedi Wang, Pratyush Tiwary\",\"doi\":\"arxiv-2409.11843\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Molecular dynamics simulations offer detailed insights into atomic motions\\nbut face timescale limitations. Enhanced sampling methods have addressed these\\nchallenges but even with machine learning, they often rely on pre-selected\\nexpert-based features. In this work, we present the Graph Neural Network-State\\nPredictive Information Bottleneck (GNN-SPIB) framework, which combines graph\\nneural networks and the State Predictive Information Bottleneck to\\nautomatically learn low-dimensional representations directly from atomic\\ncoordinates. Tested on three benchmark systems, our approach predicts essential\\nstructural, thermodynamic and kinetic information for slow processes,\\ndemonstrating robustness across diverse systems. The method shows promise for\\ncomplex systems, enabling effective enhanced sampling without requiring\\npre-defined reaction coordinates or input features.\",\"PeriodicalId\":501520,\"journal\":{\"name\":\"arXiv - PHYS - Statistical Mechanics\",\"volume\":\"4 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - PHYS - Statistical Mechanics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.11843\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - PHYS - Statistical Mechanics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.11843","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

分子动力学模拟可提供原子运动的详细洞察,但面临时间尺度的限制。增强型采样方法已经解决了这些挑战,但即使是机器学习,它们也往往依赖于预选的基于专家的特征。在这项工作中,我们提出了图神经网络-状态预测信息瓶颈(GNN-SPIB)框架,该框架结合了图神经网络和状态预测信息瓶颈,可直接从原子坐标自动学习低维表征。通过对三个基准系统的测试,我们的方法预测出了缓慢过程的基本结构、热力学和动力学信息,证明了该方法在不同系统中的鲁棒性。该方法有望用于复杂系统,无需预先定义反应坐标或输入特征,即可实现有效的增强采样。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Graph Neural Network-State Predictive Information Bottleneck (GNN-SPIB) approach for learning molecular thermodynamics and kinetics
Molecular dynamics simulations offer detailed insights into atomic motions but face timescale limitations. Enhanced sampling methods have addressed these challenges but even with machine learning, they often rely on pre-selected expert-based features. In this work, we present the Graph Neural Network-State Predictive Information Bottleneck (GNN-SPIB) framework, which combines graph neural networks and the State Predictive Information Bottleneck to automatically learn low-dimensional representations directly from atomic coordinates. Tested on three benchmark systems, our approach predicts essential structural, thermodynamic and kinetic information for slow processes, demonstrating robustness across diverse systems. The method shows promise for complex systems, enabling effective enhanced sampling without requiring pre-defined reaction coordinates or input features.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信