{"title":"多管齐下以 CD38 为靶点,提高抗 PD1 免疫检查点阻断疗法的疗效。","authors":"Vishnu Vijay Vijayan,Preethi Gopalakrishnan Nair,Shashi Gujar","doi":"10.1080/2162402x.2024.2400429","DOIUrl":null,"url":null,"abstract":"CD38, a multifunctional enzyme involved in NAD+ catabolism, is hypothesized to act as a metabolic checkpoint for antitumor CD8 T cells. A recent study discovered that, apart from its direct metabolic mechanisms, CD38-mediated RyR2-AKT-TCF1 signaling regulates responsiveness to anti-PD1 cancer therapy at the molecular level. These findings advocate multiprong CD38 targeting to overcome resistance to immune checkpoint blockade therapy.","PeriodicalId":19683,"journal":{"name":"Oncoimmunology","volume":null,"pages":null},"PeriodicalIF":7.2000,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Multiprong CD38 targeting to enhance anti-PD1 immune checkpoint blockade efficacy.\",\"authors\":\"Vishnu Vijay Vijayan,Preethi Gopalakrishnan Nair,Shashi Gujar\",\"doi\":\"10.1080/2162402x.2024.2400429\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"CD38, a multifunctional enzyme involved in NAD+ catabolism, is hypothesized to act as a metabolic checkpoint for antitumor CD8 T cells. A recent study discovered that, apart from its direct metabolic mechanisms, CD38-mediated RyR2-AKT-TCF1 signaling regulates responsiveness to anti-PD1 cancer therapy at the molecular level. These findings advocate multiprong CD38 targeting to overcome resistance to immune checkpoint blockade therapy.\",\"PeriodicalId\":19683,\"journal\":{\"name\":\"Oncoimmunology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":7.2000,\"publicationDate\":\"2024-09-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Oncoimmunology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1080/2162402x.2024.2400429\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Oncoimmunology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/2162402x.2024.2400429","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Multiprong CD38 targeting to enhance anti-PD1 immune checkpoint blockade efficacy.
CD38, a multifunctional enzyme involved in NAD+ catabolism, is hypothesized to act as a metabolic checkpoint for antitumor CD8 T cells. A recent study discovered that, apart from its direct metabolic mechanisms, CD38-mediated RyR2-AKT-TCF1 signaling regulates responsiveness to anti-PD1 cancer therapy at the molecular level. These findings advocate multiprong CD38 targeting to overcome resistance to immune checkpoint blockade therapy.
期刊介绍:
Tumor immunology explores the natural and therapy-induced recognition of cancers, along with the complex interplay between oncogenesis, inflammation, and immunosurveillance. In response to recent advancements, a new journal, OncoImmunology, is being launched to specifically address tumor immunology. The field has seen significant progress with the clinical demonstration and FDA approval of anticancer immunotherapies. There's also growing evidence suggesting that many current chemotherapeutic agents rely on immune effectors for their efficacy.
While oncologists have historically utilized chemotherapeutic and radiotherapeutic regimens successfully, they may have unwittingly leveraged the immune system's ability to recognize tumor-specific antigens and control cancer growth. Consequently, immunological biomarkers are increasingly crucial for cancer prognosis and predicting chemotherapy efficacy. There's strong support for combining conventional anticancer therapies with immunotherapies. OncoImmunology will welcome high-profile submissions spanning fundamental, translational, and clinical aspects of tumor immunology, including solid and hematological cancers, inflammation, and both innate and acquired immune responses.