具有泊松跳跃和有限延迟的二阶随机微分系统的解的存在性和近似可控性

IF 1.4 3区 数学 Q1 MATHEMATICS
Xiaofeng Su, Dongxue Yan, Xianlong Fu
{"title":"具有泊松跳跃和有限延迟的二阶随机微分系统的解的存在性和近似可控性","authors":"Xiaofeng Su, Dongxue Yan, Xianlong Fu","doi":"10.1007/s11784-024-01129-4","DOIUrl":null,"url":null,"abstract":"<p>Stochastic differential equations with Poisson jumps become very popular in modeling the phenomena arising in various fields, for instance in financial mathematics, where the jump processes are widely used to describe the asset and commodity price dynamics. The objective of this paper is to investigate the approximate controllability for a class of control systems represented by second-order stochastic differential equations with time delay and Poisson jumps. The main technique is the theory of fundamental solution constructed through Laplace transformation. By employing the so-called resolvent condition, theory of cosine operators and stochastic analysis, we formulate and prove some sufficient conditions for the approximate controllability of the considered system. In the end an example is given and discussed to illustrate the obtained results.</p>","PeriodicalId":54835,"journal":{"name":"Journal of Fixed Point Theory and Applications","volume":"4 1","pages":""},"PeriodicalIF":1.4000,"publicationDate":"2024-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Existence of solutions and approximate controllability of second-order stochastic differential systems with Poisson jumps and finite delay\",\"authors\":\"Xiaofeng Su, Dongxue Yan, Xianlong Fu\",\"doi\":\"10.1007/s11784-024-01129-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Stochastic differential equations with Poisson jumps become very popular in modeling the phenomena arising in various fields, for instance in financial mathematics, where the jump processes are widely used to describe the asset and commodity price dynamics. The objective of this paper is to investigate the approximate controllability for a class of control systems represented by second-order stochastic differential equations with time delay and Poisson jumps. The main technique is the theory of fundamental solution constructed through Laplace transformation. By employing the so-called resolvent condition, theory of cosine operators and stochastic analysis, we formulate and prove some sufficient conditions for the approximate controllability of the considered system. In the end an example is given and discussed to illustrate the obtained results.</p>\",\"PeriodicalId\":54835,\"journal\":{\"name\":\"Journal of Fixed Point Theory and Applications\",\"volume\":\"4 1\",\"pages\":\"\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2024-09-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Fixed Point Theory and Applications\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s11784-024-01129-4\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Fixed Point Theory and Applications","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s11784-024-01129-4","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

具有泊松跳跃的随机微分方程在模拟各个领域中出现的现象时非常流行,例如在金融数学中,跳跃过程被广泛用于描述资产和商品价格动态。本文的目的是研究具有时延和泊松跳跃的二阶随机微分方程所代表的一类控制系统的近似可控性。主要技术是通过拉普拉斯变换构建的基本解理论。通过运用所谓的解析条件、余弦算子理论和随机分析,我们提出并证明了所考虑系统近似可控性的一些充分条件。最后,我们给出并讨论了一个例子来说明所获得的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Existence of solutions and approximate controllability of second-order stochastic differential systems with Poisson jumps and finite delay

Stochastic differential equations with Poisson jumps become very popular in modeling the phenomena arising in various fields, for instance in financial mathematics, where the jump processes are widely used to describe the asset and commodity price dynamics. The objective of this paper is to investigate the approximate controllability for a class of control systems represented by second-order stochastic differential equations with time delay and Poisson jumps. The main technique is the theory of fundamental solution constructed through Laplace transformation. By employing the so-called resolvent condition, theory of cosine operators and stochastic analysis, we formulate and prove some sufficient conditions for the approximate controllability of the considered system. In the end an example is given and discussed to illustrate the obtained results.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.10
自引率
5.60%
发文量
68
审稿时长
>12 weeks
期刊介绍: The Journal of Fixed Point Theory and Applications (JFPTA) provides a publication forum for an important research in all disciplines in which the use of tools of fixed point theory plays an essential role. Research topics include but are not limited to: (i) New developments in fixed point theory as well as in related topological methods, in particular: Degree and fixed point index for various types of maps, Algebraic topology methods in the context of the Leray-Schauder theory, Lefschetz and Nielsen theories, Borsuk-Ulam type results, Vietoris fractions and fixed points for set-valued maps. (ii) Ramifications to global analysis, dynamical systems and symplectic topology, in particular: Degree and Conley Index in the study of non-linear phenomena, Lusternik-Schnirelmann and Morse theoretic methods, Floer Homology and Hamiltonian Systems, Elliptic complexes and the Atiyah-Bott fixed point theorem, Symplectic fixed point theorems and results related to the Arnold Conjecture. (iii) Significant applications in nonlinear analysis, mathematical economics and computation theory, in particular: Bifurcation theory and non-linear PDE-s, Convex analysis and variational inequalities, KKM-maps, theory of games and economics, Fixed point algorithms for computing fixed points. (iv) Contributions to important problems in geometry, fluid dynamics and mathematical physics, in particular: Global Riemannian geometry, Nonlinear problems in fluid mechanics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信