基于强化学习的风味轴子模型统计搜索策略

Satsuki Nishimura, Coh Miyao, Hajime Otsuka
{"title":"基于强化学习的风味轴子模型统计搜索策略","authors":"Satsuki Nishimura, Coh Miyao, Hajime Otsuka","doi":"arxiv-2409.10023","DOIUrl":null,"url":null,"abstract":"We propose a reinforcement learning-based search strategy to explore new\nphysics beyond the Standard Model. The reinforcement learning, which is one of\nmachine learning methods, is a powerful approach to find model parameters with\nphenomenological constraints. As a concrete example, we focus on a minimal\naxion model with a global $U(1)$ flavor symmetry. Agents of the learning\nsucceed in finding $U(1)$ charge assignments of quarks and leptons solving the\nflavor and cosmological puzzles in the Standard Model, and find more than 150\nrealistic solutions for the quark sector taking renormalization effects into\naccount. For the solutions found by the reinforcement learning-based analysis,\nwe discuss the sensitivity of future experiments for the detection of an axion\nwhich is a Nambu-Goldstone boson of the spontaneously broken $U(1)$. We also\nexamine how fast the reinforcement learning-based searching method finds the\nbest discrete parameters in comparison with conventional optimization methods.\nIn conclusion, the efficient parameter search based on the reinforcement\nlearning-based strategy enables us to perform a statistical analysis of the\nvast parameter space associated with the axion model from flavor.","PeriodicalId":501339,"journal":{"name":"arXiv - PHYS - High Energy Physics - Theory","volume":"2 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Reinforcement learning-based statistical search strategy for an axion model from flavor\",\"authors\":\"Satsuki Nishimura, Coh Miyao, Hajime Otsuka\",\"doi\":\"arxiv-2409.10023\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We propose a reinforcement learning-based search strategy to explore new\\nphysics beyond the Standard Model. The reinforcement learning, which is one of\\nmachine learning methods, is a powerful approach to find model parameters with\\nphenomenological constraints. As a concrete example, we focus on a minimal\\naxion model with a global $U(1)$ flavor symmetry. Agents of the learning\\nsucceed in finding $U(1)$ charge assignments of quarks and leptons solving the\\nflavor and cosmological puzzles in the Standard Model, and find more than 150\\nrealistic solutions for the quark sector taking renormalization effects into\\naccount. For the solutions found by the reinforcement learning-based analysis,\\nwe discuss the sensitivity of future experiments for the detection of an axion\\nwhich is a Nambu-Goldstone boson of the spontaneously broken $U(1)$. We also\\nexamine how fast the reinforcement learning-based searching method finds the\\nbest discrete parameters in comparison with conventional optimization methods.\\nIn conclusion, the efficient parameter search based on the reinforcement\\nlearning-based strategy enables us to perform a statistical analysis of the\\nvast parameter space associated with the axion model from flavor.\",\"PeriodicalId\":501339,\"journal\":{\"name\":\"arXiv - PHYS - High Energy Physics - Theory\",\"volume\":\"2 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - PHYS - High Energy Physics - Theory\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.10023\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - PHYS - High Energy Physics - Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.10023","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们提出了一种基于强化学习的搜索策略来探索标准模型之外的新物理学。强化学习是机器学习方法之一,是寻找具有现象学约束的模型参数的有力方法。作为一个具体例子,我们重点研究了一个具有全局$U(1)$味道对称性的最小axion模型。学习代理成功地找到了夸克和轻子的$U(1)$电荷分配,解决了标准模型中的味道和宇宙学难题,并在考虑重正化效应的情况下为夸克部门找到了150多个现实解。对于基于强化学习分析找到的解,我们讨论了未来实验探测轴子的灵敏度,轴子是自发破缺$U(1)$的南布-金石玻色子。总之,基于强化学习策略的高效参数搜索使我们能够对轴子模型相关的巨大参数空间进行统计分析。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Reinforcement learning-based statistical search strategy for an axion model from flavor
We propose a reinforcement learning-based search strategy to explore new physics beyond the Standard Model. The reinforcement learning, which is one of machine learning methods, is a powerful approach to find model parameters with phenomenological constraints. As a concrete example, we focus on a minimal axion model with a global $U(1)$ flavor symmetry. Agents of the learning succeed in finding $U(1)$ charge assignments of quarks and leptons solving the flavor and cosmological puzzles in the Standard Model, and find more than 150 realistic solutions for the quark sector taking renormalization effects into account. For the solutions found by the reinforcement learning-based analysis, we discuss the sensitivity of future experiments for the detection of an axion which is a Nambu-Goldstone boson of the spontaneously broken $U(1)$. We also examine how fast the reinforcement learning-based searching method finds the best discrete parameters in comparison with conventional optimization methods. In conclusion, the efficient parameter search based on the reinforcement learning-based strategy enables us to perform a statistical analysis of the vast parameter space associated with the axion model from flavor.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信