计算非重叠加权磁盘中的最短路径

Prosenjit Bose, Jean-Lou De Carufel, Guillermo Esteban, Anil Maheshwari
{"title":"计算非重叠加权磁盘中的最短路径","authors":"Prosenjit Bose, Jean-Lou De Carufel, Guillermo Esteban, Anil Maheshwari","doi":"arxiv-2409.08869","DOIUrl":null,"url":null,"abstract":"In this article, we present an approximation algorithm for solving the\nWeighted Region Problem amidst a set of $ n $ non-overlapping weighted disks in\nthe plane. For a given parameter $ \\varepsilon \\in (0,1]$, the length of the\napproximate path is at most $ (1 +\\varepsilon) $ times larger than the length\nof the actual shortest path. The algorithm is based on the discretization of\nthe space by placing points on the boundary of the disks. Using such a\ndiscretization we can use Dijkstra's algorithm for computing a shortest path in\nthe geometric graph obtained in (pseudo-)polynomial time.","PeriodicalId":501570,"journal":{"name":"arXiv - CS - Computational Geometry","volume":"14 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Computing shortest paths amid non-overlapping weighted disks\",\"authors\":\"Prosenjit Bose, Jean-Lou De Carufel, Guillermo Esteban, Anil Maheshwari\",\"doi\":\"arxiv-2409.08869\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this article, we present an approximation algorithm for solving the\\nWeighted Region Problem amidst a set of $ n $ non-overlapping weighted disks in\\nthe plane. For a given parameter $ \\\\varepsilon \\\\in (0,1]$, the length of the\\napproximate path is at most $ (1 +\\\\varepsilon) $ times larger than the length\\nof the actual shortest path. The algorithm is based on the discretization of\\nthe space by placing points on the boundary of the disks. Using such a\\ndiscretization we can use Dijkstra's algorithm for computing a shortest path in\\nthe geometric graph obtained in (pseudo-)polynomial time.\",\"PeriodicalId\":501570,\"journal\":{\"name\":\"arXiv - CS - Computational Geometry\",\"volume\":\"14 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - CS - Computational Geometry\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.08869\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Computational Geometry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.08869","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在本文中,我们提出了一种近似算法,用于解决平面内一组 $ n $ 非重叠加权盘中的加权区域问题。对于 (0,1]$ 中的给定参数 $ \varepsilon \,近似路径的长度最多比实际最短路径的长度大 $ (1 +\varepsilon) $ 倍。该算法的基础是通过在圆盘边界上放置点来离散空间。利用这种离散化,我们可以使用迪克斯特拉算法计算几何图形中的最短路径,并在(伪)多项式时间内获得。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Computing shortest paths amid non-overlapping weighted disks
In this article, we present an approximation algorithm for solving the Weighted Region Problem amidst a set of $ n $ non-overlapping weighted disks in the plane. For a given parameter $ \varepsilon \in (0,1]$, the length of the approximate path is at most $ (1 +\varepsilon) $ times larger than the length of the actual shortest path. The algorithm is based on the discretization of the space by placing points on the boundary of the disks. Using such a discretization we can use Dijkstra's algorithm for computing a shortest path in the geometric graph obtained in (pseudo-)polynomial time.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信