在线几何命中集问题的新下限和算法

Minati De, Ratnadip Mandal, Satyam Singh
{"title":"在线几何命中集问题的新下限和算法","authors":"Minati De, Ratnadip Mandal, Satyam Singh","doi":"arxiv-2409.11166","DOIUrl":null,"url":null,"abstract":"The hitting set problem is one of the fundamental problems in combinatorial\noptimization and is well-studied in offline setup. We consider the online\nhitting set problem, where only the set of points is known in advance, and\nobjects are introduced one by one. Our objective is to maintain a minimum-sized\nhitting set by making irrevocable decisions. Here, we present the study of two\nvariants of the online hitting set problem depending on the point set. In the\nfirst variant, we consider the point set to be the entire $\\mathbb{Z}^d$, while\nin the second variant, we consider the point set to be a finite subset of\n$\\mathbb{R}^2$. For hitting similarly sized {$\\alpha$-fat objects} in $\\mathbb{R}^d$ with\ndiameters in the range $[1, M]$ using points in $\\mathbb{Z}^d$, we propose a\ndeterministic algorithm having a competitive ratio of at most\n${\\lfloor\\frac{2}{\\alpha}+2\\rfloor^d}$\n$\\left(\\lfloor\\log_{2}M\\rfloor+1\\right)$. This improves the current best-known\nupper bound due to Alefkhani et al. [WAOA'23]. Then, for homothetic hypercubes\nin $\\mathbb{R}^d$ with side lengths in the range $[1, M]$ using points in\n$\\mathbb{Z}^d$, we propose a randomized algorithm having a competitive ratio of\n$O(d^2\\log M)$. To complement this result, we show that no randomized algorithm\ncan have a competitive ratio better than $\\Omega(d\\log M)$. This improves the\ncurrent best-known (deterministic) upper and lower bound of $25^d\\log M$ and\n$\\Omega(\\log M)$, respectively, due to Alefkhani et al. [WAOA'23]. Next, we consider the hitting set problem when the point set consists of $n$\npoints in $\\mathbb{R}^2$ and the objects are homothetic regular $k$-gons having\ndiameter in the range $[1, M]$. We present an $O(\\log n\\log M)$ competitive\nrandomized algorithm. In particular, for a fixed $M$ this result partially\nanswers an open question for squares proposed by Khan et al. [SoCG'23] and\nAlefkhani et al. [WAOA'23].","PeriodicalId":501570,"journal":{"name":"arXiv - CS - Computational Geometry","volume":"20 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"New Lower Bound and Algorithms for Online Geometric Hitting Set Problem\",\"authors\":\"Minati De, Ratnadip Mandal, Satyam Singh\",\"doi\":\"arxiv-2409.11166\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The hitting set problem is one of the fundamental problems in combinatorial\\noptimization and is well-studied in offline setup. We consider the online\\nhitting set problem, where only the set of points is known in advance, and\\nobjects are introduced one by one. Our objective is to maintain a minimum-sized\\nhitting set by making irrevocable decisions. Here, we present the study of two\\nvariants of the online hitting set problem depending on the point set. In the\\nfirst variant, we consider the point set to be the entire $\\\\mathbb{Z}^d$, while\\nin the second variant, we consider the point set to be a finite subset of\\n$\\\\mathbb{R}^2$. For hitting similarly sized {$\\\\alpha$-fat objects} in $\\\\mathbb{R}^d$ with\\ndiameters in the range $[1, M]$ using points in $\\\\mathbb{Z}^d$, we propose a\\ndeterministic algorithm having a competitive ratio of at most\\n${\\\\lfloor\\\\frac{2}{\\\\alpha}+2\\\\rfloor^d}$\\n$\\\\left(\\\\lfloor\\\\log_{2}M\\\\rfloor+1\\\\right)$. This improves the current best-known\\nupper bound due to Alefkhani et al. [WAOA'23]. Then, for homothetic hypercubes\\nin $\\\\mathbb{R}^d$ with side lengths in the range $[1, M]$ using points in\\n$\\\\mathbb{Z}^d$, we propose a randomized algorithm having a competitive ratio of\\n$O(d^2\\\\log M)$. To complement this result, we show that no randomized algorithm\\ncan have a competitive ratio better than $\\\\Omega(d\\\\log M)$. This improves the\\ncurrent best-known (deterministic) upper and lower bound of $25^d\\\\log M$ and\\n$\\\\Omega(\\\\log M)$, respectively, due to Alefkhani et al. [WAOA'23]. Next, we consider the hitting set problem when the point set consists of $n$\\npoints in $\\\\mathbb{R}^2$ and the objects are homothetic regular $k$-gons having\\ndiameter in the range $[1, M]$. We present an $O(\\\\log n\\\\log M)$ competitive\\nrandomized algorithm. In particular, for a fixed $M$ this result partially\\nanswers an open question for squares proposed by Khan et al. [SoCG'23] and\\nAlefkhani et al. [WAOA'23].\",\"PeriodicalId\":501570,\"journal\":{\"name\":\"arXiv - CS - Computational Geometry\",\"volume\":\"20 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - CS - Computational Geometry\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.11166\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Computational Geometry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.11166","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

命中集问题是组合优化的基本问题之一,在离线设置中得到了深入研究。我们考虑的是在线命中集问题,在这个问题中,只有点的集合是预先知道的,对象是一个接一个引入的。我们的目标是通过做出不可撤销的决定来维持最小尺寸的命中集。在此,我们介绍在线命中集问题的两个变体,它们取决于点集。在第一个变量中,我们认为点集是整个 $\mathbb{Z}^d$,而在第二个变量中,我们认为点集是 $\mathbb{R}^2$ 的有限子集。对于使用$\mathbb{Z}^d$中的点在$\mathbb{R}^d$中击中直径在$[1, M]$范围内的类似大小的{$\alpha$-胖对象},我们提出了一种竞争比率最多为${\lfloor\frac{2}\{alpha}+2\rfloor^d}$\left(\lfloor\log_{2}M\rfloor+1\right)$的自决算法。这改进了目前由 Alefkhani 等人提出的最著名的上界[WAOA'23]。然后,对于边长在 $[1, M]$ 范围内、使用$mathbb{Z}^d$中的点的$\mathbb{R}^d$同调超立方体,我们提出了一种随机算法,其竞争比为$O(d^2\log M)$。作为对这一结果的补充,我们证明没有一种随机算法的竞争比优于 $\Omega(d\log M)$。这改进了目前最著名的(确定性)上下限分别为 $25^d\log M$ 和 $\Omega(\log M)$,由 Alefkhani 等人提出[WAOA'23]。接下来,我们考虑当点集由 $\mathbb{R}^2$ 中的 $n$ 点组成,且对象是直径在 $[1, M]$ 范围内的同调正则 $k$ 球时的命中集问题。我们提出了一种 $O(\log n\log M)$ 竞争性随机算法。特别是,对于固定的 $M$,这一结果部分回答了 Khan 等人[SoCG'23]和 Alefkhani 等人[WAOA'23]提出的正方形的一个开放问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
New Lower Bound and Algorithms for Online Geometric Hitting Set Problem
The hitting set problem is one of the fundamental problems in combinatorial optimization and is well-studied in offline setup. We consider the online hitting set problem, where only the set of points is known in advance, and objects are introduced one by one. Our objective is to maintain a minimum-sized hitting set by making irrevocable decisions. Here, we present the study of two variants of the online hitting set problem depending on the point set. In the first variant, we consider the point set to be the entire $\mathbb{Z}^d$, while in the second variant, we consider the point set to be a finite subset of $\mathbb{R}^2$. For hitting similarly sized {$\alpha$-fat objects} in $\mathbb{R}^d$ with diameters in the range $[1, M]$ using points in $\mathbb{Z}^d$, we propose a deterministic algorithm having a competitive ratio of at most ${\lfloor\frac{2}{\alpha}+2\rfloor^d}$ $\left(\lfloor\log_{2}M\rfloor+1\right)$. This improves the current best-known upper bound due to Alefkhani et al. [WAOA'23]. Then, for homothetic hypercubes in $\mathbb{R}^d$ with side lengths in the range $[1, M]$ using points in $\mathbb{Z}^d$, we propose a randomized algorithm having a competitive ratio of $O(d^2\log M)$. To complement this result, we show that no randomized algorithm can have a competitive ratio better than $\Omega(d\log M)$. This improves the current best-known (deterministic) upper and lower bound of $25^d\log M$ and $\Omega(\log M)$, respectively, due to Alefkhani et al. [WAOA'23]. Next, we consider the hitting set problem when the point set consists of $n$ points in $\mathbb{R}^2$ and the objects are homothetic regular $k$-gons having diameter in the range $[1, M]$. We present an $O(\log n\log M)$ competitive randomized algorithm. In particular, for a fixed $M$ this result partially answers an open question for squares proposed by Khan et al. [SoCG'23] and Alefkhani et al. [WAOA'23].
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信