用实数代数几何嵌入法处理结构上不可通约的微分代数方程

Pub Date : 2024-09-14 DOI:10.1007/s11424-024-4048-5
Wenqiang Yang, Wenyuan Wu, Greg Reid
{"title":"用实数代数几何嵌入法处理结构上不可通约的微分代数方程","authors":"Wenqiang Yang, Wenyuan Wu, Greg Reid","doi":"10.1007/s11424-024-4048-5","DOIUrl":null,"url":null,"abstract":"<p>Existing structural analysis methods may fail to identify all hidden constraints in systems of differential-algebraic equations with parameters, particularly when the system is structurally unamenable for certain parameter values. In this paper, the authors address numerical methods for polynomial systems of differential-algebraic equations using numerical real algebraic geometry to resolve such issues. Initially, the authors propose an embedding method that constructs an equivalent system with a full-rank Jacobian matrix for any given real analytic system. Secondly, the authors introduce a witness point method, which assists in detecting the constant rank of a component of the constraints in such systems. Finally, these two methods lead to a comprehensive numerical global structural analysis method for polynomial differential-algebraic equations across all components of constraints.</p>","PeriodicalId":17145,"journal":{"name":"","volume":"198 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-09-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Embedding Method by Real Numerical Algebraic Geometry for Structurally Unamenable Differential-Algebraic Equations\",\"authors\":\"Wenqiang Yang, Wenyuan Wu, Greg Reid\",\"doi\":\"10.1007/s11424-024-4048-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Existing structural analysis methods may fail to identify all hidden constraints in systems of differential-algebraic equations with parameters, particularly when the system is structurally unamenable for certain parameter values. In this paper, the authors address numerical methods for polynomial systems of differential-algebraic equations using numerical real algebraic geometry to resolve such issues. Initially, the authors propose an embedding method that constructs an equivalent system with a full-rank Jacobian matrix for any given real analytic system. Secondly, the authors introduce a witness point method, which assists in detecting the constant rank of a component of the constraints in such systems. Finally, these two methods lead to a comprehensive numerical global structural analysis method for polynomial differential-algebraic equations across all components of constraints.</p>\",\"PeriodicalId\":17145,\"journal\":{\"name\":\"\",\"volume\":\"198 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0,\"publicationDate\":\"2024-09-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"1089\",\"ListUrlMain\":\"https://doi.org/10.1007/s11424-024-4048-5\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"1089","ListUrlMain":"https://doi.org/10.1007/s11424-024-4048-5","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

现有的结构分析方法可能无法识别带参数的微分代数方程系统中的所有隐藏约束,尤其是当系统在结构上对某些参数值无法修正时。在本文中,作者利用数值实代数几何解决了微分代数方程多项式系统的数值方法问题。首先,作者提出了一种嵌入方法,可以为任何给定的实解析系统构建一个具有全秩雅各布矩阵的等价系统。其次,作者介绍了一种见证点方法,该方法有助于检测此类系统中约束部分的恒定秩。最后,这两种方法为多项式微分代数方程提供了一种全面的全局结构数值分析方法,适用于所有约束成分。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Embedding Method by Real Numerical Algebraic Geometry for Structurally Unamenable Differential-Algebraic Equations

Existing structural analysis methods may fail to identify all hidden constraints in systems of differential-algebraic equations with parameters, particularly when the system is structurally unamenable for certain parameter values. In this paper, the authors address numerical methods for polynomial systems of differential-algebraic equations using numerical real algebraic geometry to resolve such issues. Initially, the authors propose an embedding method that constructs an equivalent system with a full-rank Jacobian matrix for any given real analytic system. Secondly, the authors introduce a witness point method, which assists in detecting the constant rank of a component of the constraints in such systems. Finally, these two methods lead to a comprehensive numerical global structural analysis method for polynomial differential-algebraic equations across all components of constraints.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信