用于评估精神分裂症症状的自我监督多模态语音表征

Gowtham Premananth, Carol Espy-Wilson
{"title":"用于评估精神分裂症症状的自我监督多模态语音表征","authors":"Gowtham Premananth, Carol Espy-Wilson","doi":"arxiv-2409.09733","DOIUrl":null,"url":null,"abstract":"Multimodal schizophrenia assessment systems have gained traction over the\nlast few years. This work introduces a schizophrenia assessment system to\ndiscern between prominent symptom classes of schizophrenia and predict an\noverall schizophrenia severity score. We develop a Vector Quantized Variational\nAuto-Encoder (VQ-VAE) based Multimodal Representation Learning (MRL) model to\nproduce task-agnostic speech representations from vocal Tract Variables (TVs)\nand Facial Action Units (FAUs). These representations are then used in a\nMulti-Task Learning (MTL) based downstream prediction model to obtain class\nlabels and an overall severity score. The proposed framework outperforms the\nprevious works on the multi-class classification task across all evaluation\nmetrics (Weighted F1 score, AUC-ROC score, and Weighted Accuracy).\nAdditionally, it estimates the schizophrenia severity score, a task not\naddressed by earlier approaches.","PeriodicalId":501034,"journal":{"name":"arXiv - EE - Signal Processing","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Self-supervised Multimodal Speech Representations for the Assessment of Schizophrenia Symptoms\",\"authors\":\"Gowtham Premananth, Carol Espy-Wilson\",\"doi\":\"arxiv-2409.09733\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Multimodal schizophrenia assessment systems have gained traction over the\\nlast few years. This work introduces a schizophrenia assessment system to\\ndiscern between prominent symptom classes of schizophrenia and predict an\\noverall schizophrenia severity score. We develop a Vector Quantized Variational\\nAuto-Encoder (VQ-VAE) based Multimodal Representation Learning (MRL) model to\\nproduce task-agnostic speech representations from vocal Tract Variables (TVs)\\nand Facial Action Units (FAUs). These representations are then used in a\\nMulti-Task Learning (MTL) based downstream prediction model to obtain class\\nlabels and an overall severity score. The proposed framework outperforms the\\nprevious works on the multi-class classification task across all evaluation\\nmetrics (Weighted F1 score, AUC-ROC score, and Weighted Accuracy).\\nAdditionally, it estimates the schizophrenia severity score, a task not\\naddressed by earlier approaches.\",\"PeriodicalId\":501034,\"journal\":{\"name\":\"arXiv - EE - Signal Processing\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - EE - Signal Processing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.09733\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - EE - Signal Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.09733","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

多模态精神分裂症评估系统在过去几年中得到了广泛应用。这项研究介绍了一种精神分裂症评估系统,用于区分精神分裂症的主要症状类别,并预测精神分裂症的总体严重程度。我们开发了一种基于多模态表征学习(MRL)模型的矢量量化变异自动编码器(VQ-VAE),可从声道变量(TVs)和面部动作单元(FAUs)中生成与任务无关的语音表征。然后将这些表征用于基于多任务学习(MTL)的下游预测模型,以获得类别标签和总体严重程度评分。在多类分类任务的所有评价指标(加权 F1 分数、AUC-ROC 分数和加权准确率)上,所提出的框架都优于之前的研究成果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Self-supervised Multimodal Speech Representations for the Assessment of Schizophrenia Symptoms
Multimodal schizophrenia assessment systems have gained traction over the last few years. This work introduces a schizophrenia assessment system to discern between prominent symptom classes of schizophrenia and predict an overall schizophrenia severity score. We develop a Vector Quantized Variational Auto-Encoder (VQ-VAE) based Multimodal Representation Learning (MRL) model to produce task-agnostic speech representations from vocal Tract Variables (TVs) and Facial Action Units (FAUs). These representations are then used in a Multi-Task Learning (MTL) based downstream prediction model to obtain class labels and an overall severity score. The proposed framework outperforms the previous works on the multi-class classification task across all evaluation metrics (Weighted F1 score, AUC-ROC score, and Weighted Accuracy). Additionally, it estimates the schizophrenia severity score, a task not addressed by earlier approaches.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信