从信道状态信息中学习潜在无线动态

Charbel Bou Chaaya, Abanoub M. Girgis, Mehdi Bennis
{"title":"从信道状态信息中学习潜在无线动态","authors":"Charbel Bou Chaaya, Abanoub M. Girgis, Mehdi Bennis","doi":"arxiv-2409.10045","DOIUrl":null,"url":null,"abstract":"In this work, we propose a novel data-driven machine learning (ML) technique\nto model and predict the dynamics of the wireless propagation environment in\nlatent space. Leveraging the idea of channel charting, which learns compressed\nrepresentations of high-dimensional channel state information (CSI), we\nincorporate a predictive component to capture the dynamics of the wireless\nsystem. Hence, we jointly learn a channel encoder that maps the estimated CSI\nto an appropriate latent space, and a predictor that models the relationships\nbetween such representations. Accordingly, our problem boils down to training a\njoint-embedding predictive architecture (JEPA) that simulates the latent\ndynamics of a wireless network from CSI. We present numerical evaluations on\nmeasured data and show that the proposed JEPA displays a two-fold increase in\naccuracy over benchmarks, for longer look-ahead prediction tasks.","PeriodicalId":501034,"journal":{"name":"arXiv - EE - Signal Processing","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Learning Latent Wireless Dynamics from Channel State Information\",\"authors\":\"Charbel Bou Chaaya, Abanoub M. Girgis, Mehdi Bennis\",\"doi\":\"arxiv-2409.10045\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this work, we propose a novel data-driven machine learning (ML) technique\\nto model and predict the dynamics of the wireless propagation environment in\\nlatent space. Leveraging the idea of channel charting, which learns compressed\\nrepresentations of high-dimensional channel state information (CSI), we\\nincorporate a predictive component to capture the dynamics of the wireless\\nsystem. Hence, we jointly learn a channel encoder that maps the estimated CSI\\nto an appropriate latent space, and a predictor that models the relationships\\nbetween such representations. Accordingly, our problem boils down to training a\\njoint-embedding predictive architecture (JEPA) that simulates the latent\\ndynamics of a wireless network from CSI. We present numerical evaluations on\\nmeasured data and show that the proposed JEPA displays a two-fold increase in\\naccuracy over benchmarks, for longer look-ahead prediction tasks.\",\"PeriodicalId\":501034,\"journal\":{\"name\":\"arXiv - EE - Signal Processing\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - EE - Signal Processing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.10045\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - EE - Signal Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.10045","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在这项工作中,我们提出了一种新颖的数据驱动机器学习(ML)技术,用于建模和预测静态空间中无线传播环境的动态。利用信道制图(可学习高维信道状态信息(CSI)的压缩表示)的思想,我们加入了一个预测组件来捕捉无线系统的动态。因此,我们共同学习一个将估计的 CSI 映射到适当的潜在空间的信道编码器,以及一个对这些表示之间的关系进行建模的预测器。因此,我们的问题可以归结为训练一个联合嵌入式预测架构(JEPA),该架构可以根据 CSI 模拟无线网络的潜在动态。我们在实测数据上进行了数值评估,结果表明,与基准相比,所提出的 JEPA 在较长时间的前瞻预测任务中显示出两倍的不准确性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Learning Latent Wireless Dynamics from Channel State Information
In this work, we propose a novel data-driven machine learning (ML) technique to model and predict the dynamics of the wireless propagation environment in latent space. Leveraging the idea of channel charting, which learns compressed representations of high-dimensional channel state information (CSI), we incorporate a predictive component to capture the dynamics of the wireless system. Hence, we jointly learn a channel encoder that maps the estimated CSI to an appropriate latent space, and a predictor that models the relationships between such representations. Accordingly, our problem boils down to training a joint-embedding predictive architecture (JEPA) that simulates the latent dynamics of a wireless network from CSI. We present numerical evaluations on measured data and show that the proposed JEPA displays a two-fold increase in accuracy over benchmarks, for longer look-ahead prediction tasks.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信