利用豪斯顿反射进行快速结构化正交字典学习

Anirudh Dash, Aditya Siripuram
{"title":"利用豪斯顿反射进行快速结构化正交字典学习","authors":"Anirudh Dash, Aditya Siripuram","doi":"arxiv-2409.09138","DOIUrl":null,"url":null,"abstract":"In this paper, we propose and investigate algorithms for the structured\northogonal dictionary learning problem. First, we investigate the case when the\ndictionary is a Householder matrix. We give sample complexity results and show\ntheoretically guaranteed approximate recovery (in the $l_{\\infty}$ sense) with\noptimal computational complexity. We then attempt to generalize these\ntechniques when the dictionary is a product of a few Householder matrices. We\nnumerically validate these techniques in the sample-limited setting to show\nperformance similar to or better than existing techniques while having much\nimproved computational complexity.","PeriodicalId":501034,"journal":{"name":"arXiv - EE - Signal Processing","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Fast Structured Orthogonal Dictionary Learning using Householder Reflections\",\"authors\":\"Anirudh Dash, Aditya Siripuram\",\"doi\":\"arxiv-2409.09138\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we propose and investigate algorithms for the structured\\northogonal dictionary learning problem. First, we investigate the case when the\\ndictionary is a Householder matrix. We give sample complexity results and show\\ntheoretically guaranteed approximate recovery (in the $l_{\\\\infty}$ sense) with\\noptimal computational complexity. We then attempt to generalize these\\ntechniques when the dictionary is a product of a few Householder matrices. We\\nnumerically validate these techniques in the sample-limited setting to show\\nperformance similar to or better than existing techniques while having much\\nimproved computational complexity.\",\"PeriodicalId\":501034,\"journal\":{\"name\":\"arXiv - EE - Signal Processing\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - EE - Signal Processing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.09138\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - EE - Signal Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.09138","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文提出并研究了结构化正交字典学习问题的算法。首先,我们研究了当字典是一个 Householder 矩阵时的情况。我们给出了样本复杂度结果,并展示了具有最佳计算复杂度的理论保证近似恢复(在 $l_{\infty}$ 意义上)。然后,当字典是几个豪斯矩阵的乘积时,我们尝试推广这些技术。我们在样本有限的环境中对这些技术进行了数值验证,结果表明其性能与现有技术相近或更好,同时计算复杂度也大大提高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Fast Structured Orthogonal Dictionary Learning using Householder Reflections
In this paper, we propose and investigate algorithms for the structured orthogonal dictionary learning problem. First, we investigate the case when the dictionary is a Householder matrix. We give sample complexity results and show theoretically guaranteed approximate recovery (in the $l_{\infty}$ sense) with optimal computational complexity. We then attempt to generalize these techniques when the dictionary is a product of a few Householder matrices. We numerically validate these techniques in the sample-limited setting to show performance similar to or better than existing techniques while having much improved computational complexity.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信