用于 RIS 中联合相位和前导器优化的几何感知元学习神经网络

Dahlia Devapriya, Sheetal Kalyani
{"title":"用于 RIS 中联合相位和前导器优化的几何感知元学习神经网络","authors":"Dahlia Devapriya, Sheetal Kalyani","doi":"arxiv-2409.11270","DOIUrl":null,"url":null,"abstract":"In reconfigurable intelligent surface (RIS) aided systems, the joint\noptimization of the precoder matrix at the base station and the phase shifts of\nthe RIS elements involves significant complexity. In this paper, we propose a\ncomplex-valued, geometry aware meta-learning neural network that maximizes the\nweighted sum rate in a multi-user multiple input single output system. By\nleveraging the complex circle geometry for phase shifts and spherical geometry\nfor the precoder, the optimization occurs on Riemannian manifolds, leading to\nfaster convergence. We use a complex-valued neural network for phase shifts and\nan Euler inspired update for the precoder network. Our approach outperforms\nexisting neural network-based algorithms, offering higher weighted sum rates,\nlower power consumption, and significantly faster convergence. Specifically, it\nconverges faster by nearly 100 epochs, with a 0.7 bps improvement in weighted\nsum rate and a 1.8 dBm power gain when compared with existing work.","PeriodicalId":501034,"journal":{"name":"arXiv - EE - Signal Processing","volume":"54 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Geometry Aware Meta-Learning Neural Network for Joint Phase and Precoder Optimization in RIS\",\"authors\":\"Dahlia Devapriya, Sheetal Kalyani\",\"doi\":\"arxiv-2409.11270\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In reconfigurable intelligent surface (RIS) aided systems, the joint\\noptimization of the precoder matrix at the base station and the phase shifts of\\nthe RIS elements involves significant complexity. In this paper, we propose a\\ncomplex-valued, geometry aware meta-learning neural network that maximizes the\\nweighted sum rate in a multi-user multiple input single output system. By\\nleveraging the complex circle geometry for phase shifts and spherical geometry\\nfor the precoder, the optimization occurs on Riemannian manifolds, leading to\\nfaster convergence. We use a complex-valued neural network for phase shifts and\\nan Euler inspired update for the precoder network. Our approach outperforms\\nexisting neural network-based algorithms, offering higher weighted sum rates,\\nlower power consumption, and significantly faster convergence. Specifically, it\\nconverges faster by nearly 100 epochs, with a 0.7 bps improvement in weighted\\nsum rate and a 1.8 dBm power gain when compared with existing work.\",\"PeriodicalId\":501034,\"journal\":{\"name\":\"arXiv - EE - Signal Processing\",\"volume\":\"54 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - EE - Signal Processing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.11270\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - EE - Signal Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.11270","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在可重构智能表面(RIS)辅助系统中,基站前置编码器矩阵和 RIS 元素相移的联合优化涉及巨大的复杂性。在本文中,我们提出了一种复值几何感知元学习神经网络,它能最大限度地提高多用户多输入单输出系统中的加权和率。通过将复圆几何用于相移,将球面几何用于前置编码器,优化发生在黎曼流形上,从而加快了收敛速度。我们使用复值神经网络进行相移,并对前编码器网络进行欧拉启发更新。我们的方法优于现有的基于神经网络的算法,具有更高的加权总和率、更低的功耗和更快的收敛速度。具体来说,与现有算法相比,它的收敛速度快了近 100 个纪元,加权求和率提高了 0.7 bps,功耗增加了 1.8 dBm。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Geometry Aware Meta-Learning Neural Network for Joint Phase and Precoder Optimization in RIS
In reconfigurable intelligent surface (RIS) aided systems, the joint optimization of the precoder matrix at the base station and the phase shifts of the RIS elements involves significant complexity. In this paper, we propose a complex-valued, geometry aware meta-learning neural network that maximizes the weighted sum rate in a multi-user multiple input single output system. By leveraging the complex circle geometry for phase shifts and spherical geometry for the precoder, the optimization occurs on Riemannian manifolds, leading to faster convergence. We use a complex-valued neural network for phase shifts and an Euler inspired update for the precoder network. Our approach outperforms existing neural network-based algorithms, offering higher weighted sum rates, lower power consumption, and significantly faster convergence. Specifically, it converges faster by nearly 100 epochs, with a 0.7 bps improvement in weighted sum rate and a 1.8 dBm power gain when compared with existing work.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信