关于协方差估计中的归一化信噪比

Tzvi Diskin, Ami Wiesel
{"title":"关于协方差估计中的归一化信噪比","authors":"Tzvi Diskin, Ami Wiesel","doi":"arxiv-2409.10896","DOIUrl":null,"url":null,"abstract":"We address the Normalized Signal to Noise Ratio (NSNR) metric defined in the\nseminal paper by Reed, Mallett and Brennan on adaptive detection. The setting\nis detection of a target vector in additive correlated noise. NSNR is the ratio\nbetween the SNR of a linear detector which uses an estimated noise covariance\nand the SNR of clairvoyant detector based on the exact unknown covariance. It\nis not obvious how to evaluate NSNR since it is a function of the target\nvector. To close this gap, we consider the NSNR associated with the worst\ntarget. Using the Kantorovich Inequality, we provide a closed form solution for\nthe worst case NSNR. Then, we prove that the classical Gaussian Kullback\nLeibler (KL) divergence bounds it. Numerical experiments with different true\ncovariances and various estimates also suggest that the KL metric is more\ncorrelated with the NSNR metric than competing norm based metrics.","PeriodicalId":501034,"journal":{"name":"arXiv - EE - Signal Processing","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On the normalized signal to noise ratio in covariance estimation\",\"authors\":\"Tzvi Diskin, Ami Wiesel\",\"doi\":\"arxiv-2409.10896\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We address the Normalized Signal to Noise Ratio (NSNR) metric defined in the\\nseminal paper by Reed, Mallett and Brennan on adaptive detection. The setting\\nis detection of a target vector in additive correlated noise. NSNR is the ratio\\nbetween the SNR of a linear detector which uses an estimated noise covariance\\nand the SNR of clairvoyant detector based on the exact unknown covariance. It\\nis not obvious how to evaluate NSNR since it is a function of the target\\nvector. To close this gap, we consider the NSNR associated with the worst\\ntarget. Using the Kantorovich Inequality, we provide a closed form solution for\\nthe worst case NSNR. Then, we prove that the classical Gaussian Kullback\\nLeibler (KL) divergence bounds it. Numerical experiments with different true\\ncovariances and various estimates also suggest that the KL metric is more\\ncorrelated with the NSNR metric than competing norm based metrics.\",\"PeriodicalId\":501034,\"journal\":{\"name\":\"arXiv - EE - Signal Processing\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - EE - Signal Processing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.10896\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - EE - Signal Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.10896","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们讨论了 Reed、Mallett 和 Brennan 关于自适应检测的论文中定义的归一化信噪比(NSNR)指标。其背景是在加性相关噪声中检测目标矢量。NSNR 是使用估计噪声协方差的线性检测器的信噪比与基于精确未知协方差的千里眼检测器的信噪比之间的比率。由于 NSNR 是目标矢量的函数,因此如何评估 NSNR 并不明显。为了弥补这一缺陷,我们考虑了与最差目标相关的信噪比。利用康托洛维奇不等式,我们为最差情况下的 NSNR 提供了一个闭式解。然后,我们证明经典的高斯库尔贝克-莱伯勒(KL)发散对其进行了约束。使用不同的真方差和各种估计值进行的数值实验也表明,与基于规范的竞争指标相比,KL 指标与 NSNR 指标的相关性更高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On the normalized signal to noise ratio in covariance estimation
We address the Normalized Signal to Noise Ratio (NSNR) metric defined in the seminal paper by Reed, Mallett and Brennan on adaptive detection. The setting is detection of a target vector in additive correlated noise. NSNR is the ratio between the SNR of a linear detector which uses an estimated noise covariance and the SNR of clairvoyant detector based on the exact unknown covariance. It is not obvious how to evaluate NSNR since it is a function of the target vector. To close this gap, we consider the NSNR associated with the worst target. Using the Kantorovich Inequality, we provide a closed form solution for the worst case NSNR. Then, we prove that the classical Gaussian Kullback Leibler (KL) divergence bounds it. Numerical experiments with different true covariances and various estimates also suggest that the KL metric is more correlated with the NSNR metric than competing norm based metrics.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信