Linxiang Yang, Yihui Zhou, Hengyang Xiang, Shichen Yuan, Qingsong Shan, Shuai Zhang, Yousheng Zou, Yan Li, Hongting Chen, Tao Fang, Danni Yan, An Xie, Haibo Zeng
{"title":"包光体 NC 中的 Cs/FA 梯度分布可实现亚纳米级光谱调节和 BT.2020 纯绿色电致发光","authors":"Linxiang Yang, Yihui Zhou, Hengyang Xiang, Shichen Yuan, Qingsong Shan, Shuai Zhang, Yousheng Zou, Yan Li, Hongting Chen, Tao Fang, Danni Yan, An Xie, Haibo Zeng","doi":"10.1002/adom.202401482","DOIUrl":null,"url":null,"abstract":"<p>Lead halide perovskite exhibits great prospects in next-generation display. However, single-cation inorganic perovskite nanocrystals (NCs) still suffer from offset gamut coordinates determined by bandgap, short operating life, and low-efficiency in light-emitting diodes (LEDs), on account of the limitations in lattice stability and defect levels. Here, a thermodynamic co-competition strategy is proposed for fabricating Cs<sub>1−x</sub>FA<sub>x</sub>PbBr<sub>3</sub> NCs, which reveals the spatial distribution of A-site cations and the improvement of photoelectronic performance. This strategy achieves precise control of NCs in the pure-green range with an accuracy of sub-nanometer, further promotes the comprehensively filling-suppressing effect of incongruous lattice and surface defects. Finally, the high-precision adjusting in electroluminescence is achieved, and the champion device achieves a CIE coordinate of (0.121, 0.788), meeting the pure-green range in BT.2020. Simultaneously, the PeLED demonstrates an EQE exceeding 20% with superior stability, accompanied by 20-fold improvement in lifetime, indicating tremendous potential in next-generation display.</p>","PeriodicalId":116,"journal":{"name":"Advanced Optical Materials","volume":"12 31","pages":""},"PeriodicalIF":8.0000,"publicationDate":"2024-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Cs/FA Gradient Distribution in Perovskite NCs Enables Sub-Nanometer Spectral Regulation and BT.2020 Pure-Green Electroluminescence\",\"authors\":\"Linxiang Yang, Yihui Zhou, Hengyang Xiang, Shichen Yuan, Qingsong Shan, Shuai Zhang, Yousheng Zou, Yan Li, Hongting Chen, Tao Fang, Danni Yan, An Xie, Haibo Zeng\",\"doi\":\"10.1002/adom.202401482\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Lead halide perovskite exhibits great prospects in next-generation display. However, single-cation inorganic perovskite nanocrystals (NCs) still suffer from offset gamut coordinates determined by bandgap, short operating life, and low-efficiency in light-emitting diodes (LEDs), on account of the limitations in lattice stability and defect levels. Here, a thermodynamic co-competition strategy is proposed for fabricating Cs<sub>1−x</sub>FA<sub>x</sub>PbBr<sub>3</sub> NCs, which reveals the spatial distribution of A-site cations and the improvement of photoelectronic performance. This strategy achieves precise control of NCs in the pure-green range with an accuracy of sub-nanometer, further promotes the comprehensively filling-suppressing effect of incongruous lattice and surface defects. Finally, the high-precision adjusting in electroluminescence is achieved, and the champion device achieves a CIE coordinate of (0.121, 0.788), meeting the pure-green range in BT.2020. Simultaneously, the PeLED demonstrates an EQE exceeding 20% with superior stability, accompanied by 20-fold improvement in lifetime, indicating tremendous potential in next-generation display.</p>\",\"PeriodicalId\":116,\"journal\":{\"name\":\"Advanced Optical Materials\",\"volume\":\"12 31\",\"pages\":\"\"},\"PeriodicalIF\":8.0000,\"publicationDate\":\"2024-09-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Optical Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/adom.202401482\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Optical Materials","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/adom.202401482","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Cs/FA Gradient Distribution in Perovskite NCs Enables Sub-Nanometer Spectral Regulation and BT.2020 Pure-Green Electroluminescence
Lead halide perovskite exhibits great prospects in next-generation display. However, single-cation inorganic perovskite nanocrystals (NCs) still suffer from offset gamut coordinates determined by bandgap, short operating life, and low-efficiency in light-emitting diodes (LEDs), on account of the limitations in lattice stability and defect levels. Here, a thermodynamic co-competition strategy is proposed for fabricating Cs1−xFAxPbBr3 NCs, which reveals the spatial distribution of A-site cations and the improvement of photoelectronic performance. This strategy achieves precise control of NCs in the pure-green range with an accuracy of sub-nanometer, further promotes the comprehensively filling-suppressing effect of incongruous lattice and surface defects. Finally, the high-precision adjusting in electroluminescence is achieved, and the champion device achieves a CIE coordinate of (0.121, 0.788), meeting the pure-green range in BT.2020. Simultaneously, the PeLED demonstrates an EQE exceeding 20% with superior stability, accompanied by 20-fold improvement in lifetime, indicating tremendous potential in next-generation display.
期刊介绍:
Advanced Optical Materials, part of the esteemed Advanced portfolio, is a unique materials science journal concentrating on all facets of light-matter interactions. For over a decade, it has been the preferred optical materials journal for significant discoveries in photonics, plasmonics, metamaterials, and more. The Advanced portfolio from Wiley is a collection of globally respected, high-impact journals that disseminate the best science from established and emerging researchers, aiding them in fulfilling their mission and amplifying the reach of their scientific discoveries.