实现非晶薄膜室温磷光的分子内穿透空间电荷转移效应

IF 8 2区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
Dehai Dou, Xin Zhou, Tian Wang, Qiqi Yang, Xiao Tan, Zhitian Ling, Marvin Manz, Xiaomin Liu, Gert‐Jan A. H. Wetzelaer, Xiaosong Li, Martin Baumgarten, Paul W. M. Blom, Yungui Li
{"title":"实现非晶薄膜室温磷光的分子内穿透空间电荷转移效应","authors":"Dehai Dou, Xin Zhou, Tian Wang, Qiqi Yang, Xiao Tan, Zhitian Ling, Marvin Manz, Xiaomin Liu, Gert‐Jan A. H. Wetzelaer, Xiaosong Li, Martin Baumgarten, Paul W. M. Blom, Yungui Li","doi":"10.1002/adom.202400976","DOIUrl":null,"url":null,"abstract":"Organic emitters that exhibit room‐temperature phosphorescence (RTP) in neat films have application potential for optoelectronic devices, bio‐imaging, and sensing. Due to molecular vibrations or rotations, the majority of triplet excitons recombine rapidly via non‐radiative processes in purely organic emitters, making it challenging to observe RTP in amorphous films. Here, a chemical strategy to enhance RTP in amorphous neat films is reported, by utilizing through‐space charge‐transfer (TSCT) effect induced by intramolecular steric hindrance. The donor and acceptor groups interact via spatial orbital overlaps, while molecular motions are suppressed simultaneously. As a result, triplets generated under photo‐excitation are stabilized in amorphous films, contributing to phosphorescence even at room temperature. The solvatochromic effect on the steady‐state and transient photoluminescence reveals the charge‐transfer feature of involved excited states, while the TSCT effect is further experimentally resolved by femtosecond transient absorption spectroscopy. The designed luminescent materials with pronounced TSCT effect show RTP in amorphous films, with lifetimes up to ≈40 ms, comparable to that in a rigid polymer host. Photoluminescence afterglow longer than 3 s is observed in neat films at room temperature. Therefore, it is demonstrated that utilizing intramolecular steric hindrance to stabilize long‐lived triplets leads to phosphorescence in amorphous films at room temperature.","PeriodicalId":116,"journal":{"name":"Advanced Optical Materials","volume":"3 1","pages":""},"PeriodicalIF":8.0000,"publicationDate":"2024-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Intramolecular Through‐Space Charge‐Transfer Effect for Achieving Room‐Temperature Phosphorescence in Amorphous Film\",\"authors\":\"Dehai Dou, Xin Zhou, Tian Wang, Qiqi Yang, Xiao Tan, Zhitian Ling, Marvin Manz, Xiaomin Liu, Gert‐Jan A. H. Wetzelaer, Xiaosong Li, Martin Baumgarten, Paul W. M. Blom, Yungui Li\",\"doi\":\"10.1002/adom.202400976\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Organic emitters that exhibit room‐temperature phosphorescence (RTP) in neat films have application potential for optoelectronic devices, bio‐imaging, and sensing. Due to molecular vibrations or rotations, the majority of triplet excitons recombine rapidly via non‐radiative processes in purely organic emitters, making it challenging to observe RTP in amorphous films. Here, a chemical strategy to enhance RTP in amorphous neat films is reported, by utilizing through‐space charge‐transfer (TSCT) effect induced by intramolecular steric hindrance. The donor and acceptor groups interact via spatial orbital overlaps, while molecular motions are suppressed simultaneously. As a result, triplets generated under photo‐excitation are stabilized in amorphous films, contributing to phosphorescence even at room temperature. The solvatochromic effect on the steady‐state and transient photoluminescence reveals the charge‐transfer feature of involved excited states, while the TSCT effect is further experimentally resolved by femtosecond transient absorption spectroscopy. The designed luminescent materials with pronounced TSCT effect show RTP in amorphous films, with lifetimes up to ≈40 ms, comparable to that in a rigid polymer host. Photoluminescence afterglow longer than 3 s is observed in neat films at room temperature. Therefore, it is demonstrated that utilizing intramolecular steric hindrance to stabilize long‐lived triplets leads to phosphorescence in amorphous films at room temperature.\",\"PeriodicalId\":116,\"journal\":{\"name\":\"Advanced Optical Materials\",\"volume\":\"3 1\",\"pages\":\"\"},\"PeriodicalIF\":8.0000,\"publicationDate\":\"2024-09-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Optical Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1002/adom.202400976\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Optical Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/adom.202400976","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

在整洁薄膜中显示室温磷光(RTP)的有机发光体在光电设备、生物成像和传感方面具有应用潜力。由于分子振动或旋转,大多数三重激子会在纯有机发光体中通过非辐射过程快速重组,因此在非晶态薄膜中观察 RTP 具有挑战性。本文报告了一种利用分子内立体阻碍诱导的空间电荷转移(TSCT)效应来增强非晶整齐薄膜中 RTP 的化学策略。供体基团和受体基团通过空间轨道重叠相互作用,同时分子运动受到抑制。因此,在光激发下产生的三胞胎在无定形薄膜中得到稳定,即使在室温下也能产生磷光。溶解变色效应对稳态和瞬态光致发光的影响揭示了参与激发态的电荷转移特征,而飞秒瞬态吸收光谱则进一步在实验中解析了 TSCT 效应。所设计的具有明显 TSCT 效应的发光材料在无定形薄膜中显示出 RTP,其寿命可达 ≈40 毫秒,与刚性聚合物宿主中的寿命相当。在室温下,在纯薄膜中观察到的光致发光余辉长于 3 秒。因此,这证明了利用分子内立体阻碍来稳定长寿命三聚体可在室温下在无定形薄膜中产生磷光。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Intramolecular Through‐Space Charge‐Transfer Effect for Achieving Room‐Temperature Phosphorescence in Amorphous Film

Intramolecular Through‐Space Charge‐Transfer Effect for Achieving Room‐Temperature Phosphorescence in Amorphous Film
Organic emitters that exhibit room‐temperature phosphorescence (RTP) in neat films have application potential for optoelectronic devices, bio‐imaging, and sensing. Due to molecular vibrations or rotations, the majority of triplet excitons recombine rapidly via non‐radiative processes in purely organic emitters, making it challenging to observe RTP in amorphous films. Here, a chemical strategy to enhance RTP in amorphous neat films is reported, by utilizing through‐space charge‐transfer (TSCT) effect induced by intramolecular steric hindrance. The donor and acceptor groups interact via spatial orbital overlaps, while molecular motions are suppressed simultaneously. As a result, triplets generated under photo‐excitation are stabilized in amorphous films, contributing to phosphorescence even at room temperature. The solvatochromic effect on the steady‐state and transient photoluminescence reveals the charge‐transfer feature of involved excited states, while the TSCT effect is further experimentally resolved by femtosecond transient absorption spectroscopy. The designed luminescent materials with pronounced TSCT effect show RTP in amorphous films, with lifetimes up to ≈40 ms, comparable to that in a rigid polymer host. Photoluminescence afterglow longer than 3 s is observed in neat films at room temperature. Therefore, it is demonstrated that utilizing intramolecular steric hindrance to stabilize long‐lived triplets leads to phosphorescence in amorphous films at room temperature.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Advanced Optical Materials
Advanced Optical Materials MATERIALS SCIENCE, MULTIDISCIPLINARY-OPTICS
CiteScore
13.70
自引率
6.70%
发文量
883
审稿时长
1.5 months
期刊介绍: Advanced Optical Materials, part of the esteemed Advanced portfolio, is a unique materials science journal concentrating on all facets of light-matter interactions. For over a decade, it has been the preferred optical materials journal for significant discoveries in photonics, plasmonics, metamaterials, and more. The Advanced portfolio from Wiley is a collection of globally respected, high-impact journals that disseminate the best science from established and emerging researchers, aiding them in fulfilling their mission and amplifying the reach of their scientific discoveries.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信