竞技签名:预测大学篮球队的下场比赛阵容

Srishti Sharma, Srikrishnan Divakaran, Tolga Kaya, Mehul Raval
{"title":"竞技签名:预测大学篮球队的下场比赛阵容","authors":"Srishti Sharma, Srikrishnan Divakaran, Tolga Kaya, Mehul Raval","doi":"10.1007/s00521-024-10383-z","DOIUrl":null,"url":null,"abstract":"<p>The advances in machine learning (ML) tools and techniques have enabled the non-intrusive collection and rapid analysis of massive amounts of data involving athletes in competitive collegiate sports. It has facilitated the development of services that a coach can employ in analyzing these data into actionable insights in designing training schedules and effective strategies for maximizing an athlete’s performance, while minimizing injury risk. Collegiate sports utilize data to get a competitive advantage. While game statistics are publicly available, relying on more than one form of data can help reveal a pattern. We developed a framework that considers various modalities and creates an athletic signature to predict their future performance. Our research involves the study of 42 distinct features that quantify various internal/external stressors the athletes face to characterize and estimate their athletic readiness (in the form of reactive strength index modified—RSImod) using ML algorithms. Our study, conducted over 26 weeks with 17 collegiate women’s basketball athletes, developed a framework that first performed sensitivity analysis using a hybrid approach combining the strengths of various filter-based, wrapper-based, and embedded feature importance techniques to identify the features most significantly impacting athlete readiness. These features were then categorized into four moderating variables (MVs, i.e. factors): sleep, cardiac rhythm, training strain, and travel schedule. Further, we used factor analysis to enhance interpretability and reduce computational complexity. A hybrid boosted-decision-trees-based model designed based on athlete clusters predicted future athletic readiness based on MVs with a mean squared error (MSE) of 0.0102. Partial dependence plots (PDPs) helped qualitatively learn the relationship between the moderating variables and the RSImod score. Athletic signatures, uniquely defining athlete-specific MV patterns, account for intra-individual variability, offering a better statistical basis for predicting game lineup (green/yellow/red card assignment) in combination with model predictions. SHAP (SHapley Additive exPlanations) values suggest the causative MV in order of significance for each prediction, enabling coaches to make informed decisions about training adjustments and athlete well-being, leading to performance improvement. Using the fingerprint mechanism, we created green (within 1 Standard Deviation (SD)), yellow (&gt; 1SD and &lt; 2SD), and red card (&gt; 2SD) zones for athlete readiness assessment. While, this study was conducted on D-I women’s basketball, the modalities apply to several sports, such as soccer, volleyball, football, and ice hockey. This framework allows coaches to understand their athlete dynamics from a strictly data perspective, which helps them strategize their next moves, combined with their personal experience and interactions with the team.</p>","PeriodicalId":18925,"journal":{"name":"Neural Computing and Applications","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-09-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Athletic signature: predicting the next game lineup in collegiate basketball\",\"authors\":\"Srishti Sharma, Srikrishnan Divakaran, Tolga Kaya, Mehul Raval\",\"doi\":\"10.1007/s00521-024-10383-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The advances in machine learning (ML) tools and techniques have enabled the non-intrusive collection and rapid analysis of massive amounts of data involving athletes in competitive collegiate sports. It has facilitated the development of services that a coach can employ in analyzing these data into actionable insights in designing training schedules and effective strategies for maximizing an athlete’s performance, while minimizing injury risk. Collegiate sports utilize data to get a competitive advantage. While game statistics are publicly available, relying on more than one form of data can help reveal a pattern. We developed a framework that considers various modalities and creates an athletic signature to predict their future performance. Our research involves the study of 42 distinct features that quantify various internal/external stressors the athletes face to characterize and estimate their athletic readiness (in the form of reactive strength index modified—RSImod) using ML algorithms. Our study, conducted over 26 weeks with 17 collegiate women’s basketball athletes, developed a framework that first performed sensitivity analysis using a hybrid approach combining the strengths of various filter-based, wrapper-based, and embedded feature importance techniques to identify the features most significantly impacting athlete readiness. These features were then categorized into four moderating variables (MVs, i.e. factors): sleep, cardiac rhythm, training strain, and travel schedule. Further, we used factor analysis to enhance interpretability and reduce computational complexity. A hybrid boosted-decision-trees-based model designed based on athlete clusters predicted future athletic readiness based on MVs with a mean squared error (MSE) of 0.0102. Partial dependence plots (PDPs) helped qualitatively learn the relationship between the moderating variables and the RSImod score. Athletic signatures, uniquely defining athlete-specific MV patterns, account for intra-individual variability, offering a better statistical basis for predicting game lineup (green/yellow/red card assignment) in combination with model predictions. SHAP (SHapley Additive exPlanations) values suggest the causative MV in order of significance for each prediction, enabling coaches to make informed decisions about training adjustments and athlete well-being, leading to performance improvement. Using the fingerprint mechanism, we created green (within 1 Standard Deviation (SD)), yellow (&gt; 1SD and &lt; 2SD), and red card (&gt; 2SD) zones for athlete readiness assessment. While, this study was conducted on D-I women’s basketball, the modalities apply to several sports, such as soccer, volleyball, football, and ice hockey. This framework allows coaches to understand their athlete dynamics from a strictly data perspective, which helps them strategize their next moves, combined with their personal experience and interactions with the team.</p>\",\"PeriodicalId\":18925,\"journal\":{\"name\":\"Neural Computing and Applications\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Neural Computing and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s00521-024-10383-z\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neural Computing and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s00521-024-10383-z","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文章由计算机程序翻译,如有差异,请以英文原文为准。

Athletic signature: predicting the next game lineup in collegiate basketball

Athletic signature: predicting the next game lineup in collegiate basketball

The advances in machine learning (ML) tools and techniques have enabled the non-intrusive collection and rapid analysis of massive amounts of data involving athletes in competitive collegiate sports. It has facilitated the development of services that a coach can employ in analyzing these data into actionable insights in designing training schedules and effective strategies for maximizing an athlete’s performance, while minimizing injury risk. Collegiate sports utilize data to get a competitive advantage. While game statistics are publicly available, relying on more than one form of data can help reveal a pattern. We developed a framework that considers various modalities and creates an athletic signature to predict their future performance. Our research involves the study of 42 distinct features that quantify various internal/external stressors the athletes face to characterize and estimate their athletic readiness (in the form of reactive strength index modified—RSImod) using ML algorithms. Our study, conducted over 26 weeks with 17 collegiate women’s basketball athletes, developed a framework that first performed sensitivity analysis using a hybrid approach combining the strengths of various filter-based, wrapper-based, and embedded feature importance techniques to identify the features most significantly impacting athlete readiness. These features were then categorized into four moderating variables (MVs, i.e. factors): sleep, cardiac rhythm, training strain, and travel schedule. Further, we used factor analysis to enhance interpretability and reduce computational complexity. A hybrid boosted-decision-trees-based model designed based on athlete clusters predicted future athletic readiness based on MVs with a mean squared error (MSE) of 0.0102. Partial dependence plots (PDPs) helped qualitatively learn the relationship between the moderating variables and the RSImod score. Athletic signatures, uniquely defining athlete-specific MV patterns, account for intra-individual variability, offering a better statistical basis for predicting game lineup (green/yellow/red card assignment) in combination with model predictions. SHAP (SHapley Additive exPlanations) values suggest the causative MV in order of significance for each prediction, enabling coaches to make informed decisions about training adjustments and athlete well-being, leading to performance improvement. Using the fingerprint mechanism, we created green (within 1 Standard Deviation (SD)), yellow (> 1SD and < 2SD), and red card (> 2SD) zones for athlete readiness assessment. While, this study was conducted on D-I women’s basketball, the modalities apply to several sports, such as soccer, volleyball, football, and ice hockey. This framework allows coaches to understand their athlete dynamics from a strictly data perspective, which helps them strategize their next moves, combined with their personal experience and interactions with the team.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信