Abhishek Katoch, Sang Han Park, Kwangsik Jeong, Masoud Lazemi, Ru-Pan Wang, Hyun S. Ahn, Tae Kyu Kim, Frank M.F. de Groot, Soonnam Kwon
{"title":"纳米尺寸对 CeO2 中光激发极子衰变动力学的影响","authors":"Abhishek Katoch, Sang Han Park, Kwangsik Jeong, Masoud Lazemi, Ru-Pan Wang, Hyun S. Ahn, Tae Kyu Kim, Frank M.F. de Groot, Soonnam Kwon","doi":"10.1002/adom.202401386","DOIUrl":null,"url":null,"abstract":"The study of polaron dynamics in complex materials has garnered significant attention owing to its implications for various technological applications, including catalysis, solid-state devices, and energy storage. This paper investigates the photo-excited electron and hole polaron dynamics in cerium dioxide (CeO<sub>2</sub>) using time-resolved X-ray absorption spectroscopy, with an emphasis on the nano-size effect. Additionally, density functional theory and multiplet calculations have been utilized to reveal the photo-excited polaron dynamics in CeO<sub>2</sub> single crystal (SC) and nanocrystal (NC). The electron polaron is observed to decay into a deep trap site with a short duration of ≈5 ps, while electrons in the traps stay for more than 1400 ps. The most significant observation is the behavior of holes in NC, which tends to stay longer (≈150 ps) compared to SC (<10 ps) suggesting hole existence more at the surface than at bulk. The fast dissociation of the electron polarons the prolonged lifetime of the electrons above the Fermi level and the enhanced hole lifetime at the surface are proposed to be among the various factors that influence the high reactivity of CeO<sub>2</sub>.","PeriodicalId":116,"journal":{"name":"Advanced Optical Materials","volume":null,"pages":null},"PeriodicalIF":8.0000,"publicationDate":"2024-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Nano-Size Effects on Decay Dynamics of Photo-Excited Polarons in CeO2\",\"authors\":\"Abhishek Katoch, Sang Han Park, Kwangsik Jeong, Masoud Lazemi, Ru-Pan Wang, Hyun S. Ahn, Tae Kyu Kim, Frank M.F. de Groot, Soonnam Kwon\",\"doi\":\"10.1002/adom.202401386\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The study of polaron dynamics in complex materials has garnered significant attention owing to its implications for various technological applications, including catalysis, solid-state devices, and energy storage. This paper investigates the photo-excited electron and hole polaron dynamics in cerium dioxide (CeO<sub>2</sub>) using time-resolved X-ray absorption spectroscopy, with an emphasis on the nano-size effect. Additionally, density functional theory and multiplet calculations have been utilized to reveal the photo-excited polaron dynamics in CeO<sub>2</sub> single crystal (SC) and nanocrystal (NC). The electron polaron is observed to decay into a deep trap site with a short duration of ≈5 ps, while electrons in the traps stay for more than 1400 ps. The most significant observation is the behavior of holes in NC, which tends to stay longer (≈150 ps) compared to SC (<10 ps) suggesting hole existence more at the surface than at bulk. The fast dissociation of the electron polarons the prolonged lifetime of the electrons above the Fermi level and the enhanced hole lifetime at the surface are proposed to be among the various factors that influence the high reactivity of CeO<sub>2</sub>.\",\"PeriodicalId\":116,\"journal\":{\"name\":\"Advanced Optical Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":8.0000,\"publicationDate\":\"2024-09-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Optical Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1002/adom.202401386\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Optical Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/adom.202401386","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Nano-Size Effects on Decay Dynamics of Photo-Excited Polarons in CeO2
The study of polaron dynamics in complex materials has garnered significant attention owing to its implications for various technological applications, including catalysis, solid-state devices, and energy storage. This paper investigates the photo-excited electron and hole polaron dynamics in cerium dioxide (CeO2) using time-resolved X-ray absorption spectroscopy, with an emphasis on the nano-size effect. Additionally, density functional theory and multiplet calculations have been utilized to reveal the photo-excited polaron dynamics in CeO2 single crystal (SC) and nanocrystal (NC). The electron polaron is observed to decay into a deep trap site with a short duration of ≈5 ps, while electrons in the traps stay for more than 1400 ps. The most significant observation is the behavior of holes in NC, which tends to stay longer (≈150 ps) compared to SC (<10 ps) suggesting hole existence more at the surface than at bulk. The fast dissociation of the electron polarons the prolonged lifetime of the electrons above the Fermi level and the enhanced hole lifetime at the surface are proposed to be among the various factors that influence the high reactivity of CeO2.
期刊介绍:
Advanced Optical Materials, part of the esteemed Advanced portfolio, is a unique materials science journal concentrating on all facets of light-matter interactions. For over a decade, it has been the preferred optical materials journal for significant discoveries in photonics, plasmonics, metamaterials, and more. The Advanced portfolio from Wiley is a collection of globally respected, high-impact journals that disseminate the best science from established and emerging researchers, aiding them in fulfilling their mission and amplifying the reach of their scientific discoveries.