Romulo Augusto Aires Soares, Alexandre Cesar Muniz de Oliveira, Paulo Rogerio de Almeida Ribeiro, Areolino de Almeida Neto
{"title":"利用 DETR 和多个自协调神经网络进行枪支探测","authors":"Romulo Augusto Aires Soares, Alexandre Cesar Muniz de Oliveira, Paulo Rogerio de Almeida Ribeiro, Areolino de Almeida Neto","doi":"10.1007/s00521-024-10373-1","DOIUrl":null,"url":null,"abstract":"<p>This paper presents a new strategy that uses multiple neural networks in conjunction with the DEtection TRansformer (DETR) network to detect firearms in surveillance images. The strategy developed in this work presents a methodology that promotes collaboration and self-coordination of networks in the fully connected layers of DETR through the technique of multiple self-coordinating artificial neural networks (MANN), which does not require a coordinator. This self-coordination consists of training the networks one after the other and integrating their outputs without an extra element called a coordinator. The results indicate that the proposed network is highly effective, achieving high-level outcomes in firearm detection. The network’s high precision of 84% and its ability to perform classifications are noteworthy.</p>","PeriodicalId":18925,"journal":{"name":"Neural Computing and Applications","volume":"4 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Firearm detection using DETR with multiple self-coordinated neural networks\",\"authors\":\"Romulo Augusto Aires Soares, Alexandre Cesar Muniz de Oliveira, Paulo Rogerio de Almeida Ribeiro, Areolino de Almeida Neto\",\"doi\":\"10.1007/s00521-024-10373-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>This paper presents a new strategy that uses multiple neural networks in conjunction with the DEtection TRansformer (DETR) network to detect firearms in surveillance images. The strategy developed in this work presents a methodology that promotes collaboration and self-coordination of networks in the fully connected layers of DETR through the technique of multiple self-coordinating artificial neural networks (MANN), which does not require a coordinator. This self-coordination consists of training the networks one after the other and integrating their outputs without an extra element called a coordinator. The results indicate that the proposed network is highly effective, achieving high-level outcomes in firearm detection. The network’s high precision of 84% and its ability to perform classifications are noteworthy.</p>\",\"PeriodicalId\":18925,\"journal\":{\"name\":\"Neural Computing and Applications\",\"volume\":\"4 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Neural Computing and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s00521-024-10373-1\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neural Computing and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s00521-024-10373-1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Firearm detection using DETR with multiple self-coordinated neural networks
This paper presents a new strategy that uses multiple neural networks in conjunction with the DEtection TRansformer (DETR) network to detect firearms in surveillance images. The strategy developed in this work presents a methodology that promotes collaboration and self-coordination of networks in the fully connected layers of DETR through the technique of multiple self-coordinating artificial neural networks (MANN), which does not require a coordinator. This self-coordination consists of training the networks one after the other and integrating their outputs without an extra element called a coordinator. The results indicate that the proposed network is highly effective, achieving high-level outcomes in firearm detection. The network’s high precision of 84% and its ability to perform classifications are noteworthy.