噬菌体辅助细菌促进有机氯农药污染下的土壤多功能性

IF 4.4 2区 工程技术 Q1 ENGINEERING, MULTIDISCIPLINARY
DuoKai Zhao, HuiZhen Chao, Jose Luis Balcazar, ShiMao Wu, XiaoXuan Zheng, YunLing Wu, ShuJian Yuan, MingMing Sun, Feng Hu
{"title":"噬菌体辅助细菌促进有机氯农药污染下的土壤多功能性","authors":"DuoKai Zhao, HuiZhen Chao, Jose Luis Balcazar, ShiMao Wu, XiaoXuan Zheng, YunLing Wu, ShuJian Yuan, MingMing Sun, Feng Hu","doi":"10.1007/s11431-024-2693-7","DOIUrl":null,"url":null,"abstract":"<p>As the most abundant living entities in the environment, viruses have been well recognized as crucial members in sustaining biogeochemical cycling. However, the significance of viruses in soil ecosystem multifunctionality remains under-explored. In this study, we used metagenomics and meta-viromics analysis to investigate the role of soil viruses in soil ecosystem functions under heavy, light, and no organochlorine pesticides (OCPs) contamination. In the three types of soil samples collected, light-contaminated soils supported the highest level of multifunctionality, followed by heavy-contaminated soils and clean soils. Additionally, our results revealed a positive correlation between bacterial community evenness and multifunctionality index (<i>p</i> &lt; 0.05). Dominant bacterial species with biodegradation and stress resistance advantages exhibited higher abundance in OCP-affected soils, potentially playing a core functional supporting role. Furthermore, our results indicated that the species richness and diversity of bacteriophages were positively correlated with multifunctionality (<i>p</i> &lt; 0.05) in OCP-affected soils. Bacteriophages in OCP-affected soils regulate host metabolism and enhance soil ecosystem multifunctionality by infecting functional bacterial hosts and encoding AMGs related to soil element cycling. Our findings emphasize the potential effect of phages on ecosystem multifunctionality in contaminated soil, suggesting that phages may serve as contributors to soil ecology beyond bacteria and other microorganisms. Therefore, in polluted or constrained soils, further research could potentially translate phage communities and related ecological processes into artificial methods for application in soil pollution remediation or ecological restoration.</p>","PeriodicalId":21612,"journal":{"name":"Science China Technological Sciences","volume":null,"pages":null},"PeriodicalIF":4.4000,"publicationDate":"2024-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Bacteriophages assisted bacteria to facilitate soil multifunctionality under organochlorine pesticide contamination\",\"authors\":\"DuoKai Zhao, HuiZhen Chao, Jose Luis Balcazar, ShiMao Wu, XiaoXuan Zheng, YunLing Wu, ShuJian Yuan, MingMing Sun, Feng Hu\",\"doi\":\"10.1007/s11431-024-2693-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>As the most abundant living entities in the environment, viruses have been well recognized as crucial members in sustaining biogeochemical cycling. However, the significance of viruses in soil ecosystem multifunctionality remains under-explored. In this study, we used metagenomics and meta-viromics analysis to investigate the role of soil viruses in soil ecosystem functions under heavy, light, and no organochlorine pesticides (OCPs) contamination. In the three types of soil samples collected, light-contaminated soils supported the highest level of multifunctionality, followed by heavy-contaminated soils and clean soils. Additionally, our results revealed a positive correlation between bacterial community evenness and multifunctionality index (<i>p</i> &lt; 0.05). Dominant bacterial species with biodegradation and stress resistance advantages exhibited higher abundance in OCP-affected soils, potentially playing a core functional supporting role. Furthermore, our results indicated that the species richness and diversity of bacteriophages were positively correlated with multifunctionality (<i>p</i> &lt; 0.05) in OCP-affected soils. Bacteriophages in OCP-affected soils regulate host metabolism and enhance soil ecosystem multifunctionality by infecting functional bacterial hosts and encoding AMGs related to soil element cycling. Our findings emphasize the potential effect of phages on ecosystem multifunctionality in contaminated soil, suggesting that phages may serve as contributors to soil ecology beyond bacteria and other microorganisms. Therefore, in polluted or constrained soils, further research could potentially translate phage communities and related ecological processes into artificial methods for application in soil pollution remediation or ecological restoration.</p>\",\"PeriodicalId\":21612,\"journal\":{\"name\":\"Science China Technological Sciences\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.4000,\"publicationDate\":\"2024-09-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Science China Technological Sciences\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1007/s11431-024-2693-7\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science China Technological Sciences","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s11431-024-2693-7","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

作为环境中最丰富的生物实体,病毒已被公认为维持生物地球化学循环的关键成员。然而,病毒在土壤生态系统多功能性中的意义仍未得到充分探索。在本研究中,我们利用元基因组学和元病毒组学分析方法研究了重度、轻度和无有机氯农药(OCPs)污染下土壤病毒在土壤生态系统功能中的作用。在采集的三种土壤样本中,轻度污染土壤的多功能性水平最高,其次是重度污染土壤和清洁土壤。此外,我们的研究结果表明,细菌群落均匀度与多功能指数呈正相关(p < 0.05)。在受 OCP 影响的土壤中,具有生物降解和抗逆优势的优势细菌物种丰度较高,可能发挥着核心功能支持作用。此外,我们的研究结果表明,在受 OCP 影响的土壤中,噬菌体的物种丰富度和多样性与多功能性呈正相关(p < 0.05)。受 OCP 影响的土壤中的噬菌体通过感染功能性细菌宿主和编码与土壤元素循环相关的 AMGs,调节宿主的新陈代谢并增强土壤生态系统的多功能性。我们的发现强调了噬菌体对受污染土壤生态系统多功能性的潜在影响,表明噬菌体可能是细菌和其他微生物之外的土壤生态贡献者。因此,在受污染或受限制的土壤中,进一步的研究有可能将噬菌体群落和相关生态过程转化为人工方法,应用于土壤污染修复或生态恢复。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Bacteriophages assisted bacteria to facilitate soil multifunctionality under organochlorine pesticide contamination

As the most abundant living entities in the environment, viruses have been well recognized as crucial members in sustaining biogeochemical cycling. However, the significance of viruses in soil ecosystem multifunctionality remains under-explored. In this study, we used metagenomics and meta-viromics analysis to investigate the role of soil viruses in soil ecosystem functions under heavy, light, and no organochlorine pesticides (OCPs) contamination. In the three types of soil samples collected, light-contaminated soils supported the highest level of multifunctionality, followed by heavy-contaminated soils and clean soils. Additionally, our results revealed a positive correlation between bacterial community evenness and multifunctionality index (p < 0.05). Dominant bacterial species with biodegradation and stress resistance advantages exhibited higher abundance in OCP-affected soils, potentially playing a core functional supporting role. Furthermore, our results indicated that the species richness and diversity of bacteriophages were positively correlated with multifunctionality (p < 0.05) in OCP-affected soils. Bacteriophages in OCP-affected soils regulate host metabolism and enhance soil ecosystem multifunctionality by infecting functional bacterial hosts and encoding AMGs related to soil element cycling. Our findings emphasize the potential effect of phages on ecosystem multifunctionality in contaminated soil, suggesting that phages may serve as contributors to soil ecology beyond bacteria and other microorganisms. Therefore, in polluted or constrained soils, further research could potentially translate phage communities and related ecological processes into artificial methods for application in soil pollution remediation or ecological restoration.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Science China Technological Sciences
Science China Technological Sciences ENGINEERING, MULTIDISCIPLINARY-MATERIALS SCIENCE, MULTIDISCIPLINARY
CiteScore
8.40
自引率
10.90%
发文量
4380
审稿时长
3.3 months
期刊介绍: Science China Technological Sciences, an academic journal cosponsored by the Chinese Academy of Sciences and the National Natural Science Foundation of China, and published by Science China Press, is committed to publishing high-quality, original results in both basic and applied research. Science China Technological Sciences is published in both print and electronic forms. It is indexed by Science Citation Index. Categories of articles: Reviews summarize representative results and achievements in a particular topic or an area, comment on the current state of research, and advise on the research directions. The author’s own opinion and related discussion is requested. Research papers report on important original results in all areas of technological sciences. Brief reports present short reports in a timely manner of the latest important results.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信