微波频率下的 CoFe/Cu/CoFe/FeMn 自旋阀和 CoFe/Cu/CoFe 三层纳米结构

IF 1.1 4区 物理与天体物理 Q4 PHYSICS, APPLIED
A. B. Rinkevich, E. A. Kuznetsov, D. V. Perov, M. A. Milyaev, L. I. Naumova, M. V. Makarova
{"title":"微波频率下的 CoFe/Cu/CoFe/FeMn 自旋阀和 CoFe/Cu/CoFe 三层纳米结构","authors":"A. B. Rinkevich,&nbsp;E. A. Kuznetsov,&nbsp;D. V. Perov,&nbsp;M. A. Milyaev,&nbsp;L. I. Naumova,&nbsp;M. V. Makarova","doi":"10.1134/S1063784224030332","DOIUrl":null,"url":null,"abstract":"<p>The microwave magnetoresistance of CoFe/Cu/CoFe/FeMn spin valves and CoFe/Cu/CoFe three-layer nanostructures with high magnetoresistance has been studied. The transmission and reflection coefficients were measured at the frequency range from 26 to 38 GHz in magnetic fields up to 12 kOe. It is shown that the dependences of the transmission coefficient of spin valves are not symmetric with respect to the <i>H</i> = 0 axis, as well as the dependences of magnetoresistance. It is established that the relative changes in the microwave transmission coefficient are 1.5–2 times higher than the relative magnetoresistance measured at direct current. Changes in the reflection coefficient have a smaller value and the opposite sign with respect to changes in the transmission coefficient.</p>","PeriodicalId":783,"journal":{"name":"Technical Physics","volume":null,"pages":null},"PeriodicalIF":1.1000,"publicationDate":"2024-09-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"CoFe/Cu/CoFe/FeMn Spin Valves and CoFe/Cu/CoFe Three-Layer Nanostructures at Microwave Frequencies\",\"authors\":\"A. B. Rinkevich,&nbsp;E. A. Kuznetsov,&nbsp;D. V. Perov,&nbsp;M. A. Milyaev,&nbsp;L. I. Naumova,&nbsp;M. V. Makarova\",\"doi\":\"10.1134/S1063784224030332\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The microwave magnetoresistance of CoFe/Cu/CoFe/FeMn spin valves and CoFe/Cu/CoFe three-layer nanostructures with high magnetoresistance has been studied. The transmission and reflection coefficients were measured at the frequency range from 26 to 38 GHz in magnetic fields up to 12 kOe. It is shown that the dependences of the transmission coefficient of spin valves are not symmetric with respect to the <i>H</i> = 0 axis, as well as the dependences of magnetoresistance. It is established that the relative changes in the microwave transmission coefficient are 1.5–2 times higher than the relative magnetoresistance measured at direct current. Changes in the reflection coefficient have a smaller value and the opposite sign with respect to changes in the transmission coefficient.</p>\",\"PeriodicalId\":783,\"journal\":{\"name\":\"Technical Physics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2024-09-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Technical Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://link.springer.com/article/10.1134/S1063784224030332\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"PHYSICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Technical Physics","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1134/S1063784224030332","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"PHYSICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

摘要 研究了 CoFe/Cu/CoFe/FeMn 自旋阀和 CoFe/Cu/CoFe 三层高磁阻纳米结构的微波磁阻。在高达 12 kOe 的磁场中,测量了 26 至 38 GHz 频率范围内的透射和反射系数。结果表明,自旋阀的透射系数与磁阻的关系以及 H = 0 轴的关系并不对称。研究证实,微波传输系数的相对变化是直流测量的相对磁阻的 1.5-2 倍。反射系数的变化值较小,且与透射系数的变化符号相反。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

CoFe/Cu/CoFe/FeMn Spin Valves and CoFe/Cu/CoFe Three-Layer Nanostructures at Microwave Frequencies

CoFe/Cu/CoFe/FeMn Spin Valves and CoFe/Cu/CoFe Three-Layer Nanostructures at Microwave Frequencies

CoFe/Cu/CoFe/FeMn Spin Valves and CoFe/Cu/CoFe Three-Layer Nanostructures at Microwave Frequencies

The microwave magnetoresistance of CoFe/Cu/CoFe/FeMn spin valves and CoFe/Cu/CoFe three-layer nanostructures with high magnetoresistance has been studied. The transmission and reflection coefficients were measured at the frequency range from 26 to 38 GHz in magnetic fields up to 12 kOe. It is shown that the dependences of the transmission coefficient of spin valves are not symmetric with respect to the H = 0 axis, as well as the dependences of magnetoresistance. It is established that the relative changes in the microwave transmission coefficient are 1.5–2 times higher than the relative magnetoresistance measured at direct current. Changes in the reflection coefficient have a smaller value and the opposite sign with respect to changes in the transmission coefficient.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Technical Physics
Technical Physics 物理-物理:应用
CiteScore
1.30
自引率
14.30%
发文量
139
审稿时长
3-6 weeks
期刊介绍: Technical Physics is a journal that contains practical information on all aspects of applied physics, especially instrumentation and measurement techniques. Particular emphasis is put on plasma physics and related fields such as studies of charged particles in electromagnetic fields, synchrotron radiation, electron and ion beams, gas lasers and discharges. Other journal topics are the properties of condensed matter, including semiconductors, superconductors, gases, liquids, and different materials.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信