haCCA:空间转录组和代谢组的多模块整合。

Xiaotian Shen, Xiaoyun Zhang
{"title":"haCCA:空间转录组和代谢组的多模块整合。","authors":"Xiaotian Shen, Xiaoyun Zhang","doi":"10.1101/2024.08.20.608773","DOIUrl":null,"url":null,"abstract":"Spatial techniques such as spatial transcriptomes and MALDI-MSI, offering insights into both transcripts and metabolite of tissue sections. However, integrating them with high accuracy is challenge due to no shared spots or features. We present haCCA, a workflow designed to integrate spatial transcriptomes and metabolomes data using high-correlated feature pairs and modified spatial morphological alignment. This approach ensures high-resolution and accurate spot-to-spot data integration across neighbor tissue section. We applied haCCA to both publicly available 10X Visium and MALDI-MSI datasets from mouse brain tissue and a custom spatial transcriptome and MALDI-MSI dataset from an intrahepatic cholangiocarcinoma (ICC) model, exploring the metabolic alteration of NETs(neutrophil extracellular traps) on ICC, and finding a potential mechanism that NETs upregulated Scd1 to activate fatty acid metabolism. Providing new insights into the dynamic crosstalk between genes and metabolites that regulates the tumor biological behavior and drives the response to treatment. We developed and published an easy-to-use Python package to facilitate its use.","PeriodicalId":501307,"journal":{"name":"bioRxiv - Bioinformatics","volume":"3 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"haCCA: Multi-module Integrating of spatial transcriptomes and metabolomes.\",\"authors\":\"Xiaotian Shen, Xiaoyun Zhang\",\"doi\":\"10.1101/2024.08.20.608773\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Spatial techniques such as spatial transcriptomes and MALDI-MSI, offering insights into both transcripts and metabolite of tissue sections. However, integrating them with high accuracy is challenge due to no shared spots or features. We present haCCA, a workflow designed to integrate spatial transcriptomes and metabolomes data using high-correlated feature pairs and modified spatial morphological alignment. This approach ensures high-resolution and accurate spot-to-spot data integration across neighbor tissue section. We applied haCCA to both publicly available 10X Visium and MALDI-MSI datasets from mouse brain tissue and a custom spatial transcriptome and MALDI-MSI dataset from an intrahepatic cholangiocarcinoma (ICC) model, exploring the metabolic alteration of NETs(neutrophil extracellular traps) on ICC, and finding a potential mechanism that NETs upregulated Scd1 to activate fatty acid metabolism. Providing new insights into the dynamic crosstalk between genes and metabolites that regulates the tumor biological behavior and drives the response to treatment. We developed and published an easy-to-use Python package to facilitate its use.\",\"PeriodicalId\":501307,\"journal\":{\"name\":\"bioRxiv - Bioinformatics\",\"volume\":\"3 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"bioRxiv - Bioinformatics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1101/2024.08.20.608773\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"bioRxiv - Bioinformatics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1101/2024.08.20.608773","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

空间技术,如空间转录本组和 MALDI-MSI,可以深入了解组织切片的转录本和代谢物。然而,由于没有共享的点或特征,如何高精度地整合它们是一个挑战。我们提出的 haCCA 是一种工作流程,旨在利用高相关特征对和改进的空间形态比对整合空间转录组和代谢组数据。这种方法可确保在邻近组织切片上实现高分辨率和准确的点对点数据整合。我们将 haCCA 应用于公开的小鼠脑组织 10X Visium 和 MALDI-MSI 数据集,以及一个肝内胆管癌(ICC)模型的定制空间转录组和 MALDI-MSI 数据集,探索了中性粒细胞胞外捕获物(NETs)对 ICC 的代谢改变,发现了 NETs 上调 Scd1 激活脂肪酸代谢的潜在机制。我们对基因和代谢物之间的动态串联提供了新的见解,这种串联调节了肿瘤的生物学行为并驱动了对治疗的反应。我们开发并发布了一个易于使用的 Python 软件包,以方便使用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
haCCA: Multi-module Integrating of spatial transcriptomes and metabolomes.
Spatial techniques such as spatial transcriptomes and MALDI-MSI, offering insights into both transcripts and metabolite of tissue sections. However, integrating them with high accuracy is challenge due to no shared spots or features. We present haCCA, a workflow designed to integrate spatial transcriptomes and metabolomes data using high-correlated feature pairs and modified spatial morphological alignment. This approach ensures high-resolution and accurate spot-to-spot data integration across neighbor tissue section. We applied haCCA to both publicly available 10X Visium and MALDI-MSI datasets from mouse brain tissue and a custom spatial transcriptome and MALDI-MSI dataset from an intrahepatic cholangiocarcinoma (ICC) model, exploring the metabolic alteration of NETs(neutrophil extracellular traps) on ICC, and finding a potential mechanism that NETs upregulated Scd1 to activate fatty acid metabolism. Providing new insights into the dynamic crosstalk between genes and metabolites that regulates the tumor biological behavior and drives the response to treatment. We developed and published an easy-to-use Python package to facilitate its use.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信