无界域中的自由边界问题和来自发散喷嘴的亚音速喷流

IF 2.2 2区 数学 Q1 MATHEMATICS, APPLIED
Yuanyuan Nie, Chunpeng Wang, Guanming Gai
{"title":"无界域中的自由边界问题和来自发散喷嘴的亚音速喷流","authors":"Yuanyuan Nie, Chunpeng Wang, Guanming Gai","doi":"10.1137/23m162301x","DOIUrl":null,"url":null,"abstract":"SIAM Journal on Mathematical Analysis, Volume 56, Issue 5, Page 6337-6360, October 2024. <br/> Abstract. This paper concerns subsonic jet flows from two-dimensional finitely long divergent nozzles with straight solid walls, which are governed by a free boundary problem for a quasilinear elliptic equation. It is assumed that the angle of the nozzle and the location of the inlet are fixed, while the length of the nozzle is free. For a given surrounding pressure and a given incoming mass flux, it is shown that there is a critical number not greater than [math] for the angle of the nozzle such that there exists a unique subsonic jet flow if the angle of the nozzle is less than the critical number. If this critical number is less than [math], then there is not a subsonic jet flow when the angle of the nozzle takes this critical number; furthermore, as the angle of the nozzle tends to this critical number, either the length of the nozzle tends to zero, or a sonic point will occur at the inlet. Moreover, it is shown that the subsonic jet flow tends to a uniform horizontal flow exponentially at the downstream. As to the jet, it is smooth away from the connecting point with the wall of the nozzle, and it connects the wall of the nozzle with [math] regularity for each exponent [math]. Furthermore, the jet is strictly concave to the fluid and tends to a line parallel to the symmetrical axis exponentially.","PeriodicalId":51150,"journal":{"name":"SIAM Journal on Mathematical Analysis","volume":"47 1","pages":""},"PeriodicalIF":2.2000,"publicationDate":"2024-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Free Boundary Problem in an Unbounded Domain and Subsonic Jet Flows from Divergent Nozzles\",\"authors\":\"Yuanyuan Nie, Chunpeng Wang, Guanming Gai\",\"doi\":\"10.1137/23m162301x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"SIAM Journal on Mathematical Analysis, Volume 56, Issue 5, Page 6337-6360, October 2024. <br/> Abstract. This paper concerns subsonic jet flows from two-dimensional finitely long divergent nozzles with straight solid walls, which are governed by a free boundary problem for a quasilinear elliptic equation. It is assumed that the angle of the nozzle and the location of the inlet are fixed, while the length of the nozzle is free. For a given surrounding pressure and a given incoming mass flux, it is shown that there is a critical number not greater than [math] for the angle of the nozzle such that there exists a unique subsonic jet flow if the angle of the nozzle is less than the critical number. If this critical number is less than [math], then there is not a subsonic jet flow when the angle of the nozzle takes this critical number; furthermore, as the angle of the nozzle tends to this critical number, either the length of the nozzle tends to zero, or a sonic point will occur at the inlet. Moreover, it is shown that the subsonic jet flow tends to a uniform horizontal flow exponentially at the downstream. As to the jet, it is smooth away from the connecting point with the wall of the nozzle, and it connects the wall of the nozzle with [math] regularity for each exponent [math]. Furthermore, the jet is strictly concave to the fluid and tends to a line parallel to the symmetrical axis exponentially.\",\"PeriodicalId\":51150,\"journal\":{\"name\":\"SIAM Journal on Mathematical Analysis\",\"volume\":\"47 1\",\"pages\":\"\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2024-09-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"SIAM Journal on Mathematical Analysis\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1137/23m162301x\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"SIAM Journal on Mathematical Analysis","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1137/23m162301x","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

SIAM 数学分析期刊》,第 56 卷第 5 期,第 6337-6360 页,2024 年 10 月。 摘要本文涉及来自二维有限长发散喷嘴的亚音速喷流,该喷嘴具有笔直的固体壁,受准线性椭圆方程的自由边界问题支配。假设喷嘴的角度和入口的位置是固定的,而喷嘴的长度是自由的。对于给定的周围压力和给定的输入质量通量,可以证明喷嘴角度存在一个不大于 [math] 的临界值,即如果喷嘴角度小于临界值,则存在唯一的亚音速射流。如果该临界值小于[math],则当喷嘴角度取该临界值时,不存在亚音速射流;此外,当喷嘴角度趋向于该临界值时,要么喷嘴长度趋向于零,要么在入口处出现声波点。此外,亚音速射流在下游以指数形式趋向于均匀水平流。至于射流,它在远离与喷嘴壁连接点的地方是平滑的,在每个指数[math]下,它以[math]规则性连接喷嘴壁。此外,射流严格凹向流体,并以指数方式趋向于平行于对称轴的直线。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Free Boundary Problem in an Unbounded Domain and Subsonic Jet Flows from Divergent Nozzles
SIAM Journal on Mathematical Analysis, Volume 56, Issue 5, Page 6337-6360, October 2024.
Abstract. This paper concerns subsonic jet flows from two-dimensional finitely long divergent nozzles with straight solid walls, which are governed by a free boundary problem for a quasilinear elliptic equation. It is assumed that the angle of the nozzle and the location of the inlet are fixed, while the length of the nozzle is free. For a given surrounding pressure and a given incoming mass flux, it is shown that there is a critical number not greater than [math] for the angle of the nozzle such that there exists a unique subsonic jet flow if the angle of the nozzle is less than the critical number. If this critical number is less than [math], then there is not a subsonic jet flow when the angle of the nozzle takes this critical number; furthermore, as the angle of the nozzle tends to this critical number, either the length of the nozzle tends to zero, or a sonic point will occur at the inlet. Moreover, it is shown that the subsonic jet flow tends to a uniform horizontal flow exponentially at the downstream. As to the jet, it is smooth away from the connecting point with the wall of the nozzle, and it connects the wall of the nozzle with [math] regularity for each exponent [math]. Furthermore, the jet is strictly concave to the fluid and tends to a line parallel to the symmetrical axis exponentially.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.30
自引率
5.00%
发文量
175
审稿时长
12 months
期刊介绍: SIAM Journal on Mathematical Analysis (SIMA) features research articles of the highest quality employing innovative analytical techniques to treat problems in the natural sciences. Every paper has content that is primarily analytical and that employs mathematical methods in such areas as partial differential equations, the calculus of variations, functional analysis, approximation theory, harmonic or wavelet analysis, or dynamical systems. Additionally, every paper relates to a model for natural phenomena in such areas as fluid mechanics, materials science, quantum mechanics, biology, mathematical physics, or to the computational analysis of such phenomena. Submission of a manuscript to a SIAM journal is representation by the author that the manuscript has not been published or submitted simultaneously for publication elsewhere. Typical papers for SIMA do not exceed 35 journal pages. Substantial deviations from this page limit require that the referees, editor, and editor-in-chief be convinced that the increased length is both required by the subject matter and justified by the quality of the paper.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信