作用于表面电流的毕奥特-萨瓦特算子的性质

IF 2.2 2区 数学 Q1 MATHEMATICS, APPLIED
Wadim Gerner
{"title":"作用于表面电流的毕奥特-萨瓦特算子的性质","authors":"Wadim Gerner","doi":"10.1137/23m1615693","DOIUrl":null,"url":null,"abstract":"SIAM Journal on Mathematical Analysis, Volume 56, Issue 5, Page 6446-6482, October 2024. <br/> Abstract. We investigate properties of the image and kernel of the Biot–Savart operator in the context of stellarator designs for plasma fusion. We first show that for any given coil winding surface (CWS) the image of the Biot–Savart operator is [math]-dense in the space of square integrable harmonic fields defined on a plasma domain surrounded by the CWS. Then we show that harmonic fields which are harmonic in a proper neighborhood of the underlying plasma domain can in fact be approximated in any [math]-norm by elements of the image of the Biot–Savart operator. In the second part of this work we establish an explicit isomorphism between the space of harmonic Neumann fields and the kernel of the Biot–Savart operator which in particular implies that the dimension of the kernel of the Biot–Savart operator coincides with the genus of the CWS and hence turns out to be a homotopy invariant among regular domains in 3-space. Last, we provide an iterative scheme which we show converges weakly in [math]-topology to elements of the kernel of the Biot–Savart operator.","PeriodicalId":51150,"journal":{"name":"SIAM Journal on Mathematical Analysis","volume":"186 1","pages":""},"PeriodicalIF":2.2000,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Properties of the Biot–Savart Operator Acting on Surface Currents\",\"authors\":\"Wadim Gerner\",\"doi\":\"10.1137/23m1615693\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"SIAM Journal on Mathematical Analysis, Volume 56, Issue 5, Page 6446-6482, October 2024. <br/> Abstract. We investigate properties of the image and kernel of the Biot–Savart operator in the context of stellarator designs for plasma fusion. We first show that for any given coil winding surface (CWS) the image of the Biot–Savart operator is [math]-dense in the space of square integrable harmonic fields defined on a plasma domain surrounded by the CWS. Then we show that harmonic fields which are harmonic in a proper neighborhood of the underlying plasma domain can in fact be approximated in any [math]-norm by elements of the image of the Biot–Savart operator. In the second part of this work we establish an explicit isomorphism between the space of harmonic Neumann fields and the kernel of the Biot–Savart operator which in particular implies that the dimension of the kernel of the Biot–Savart operator coincides with the genus of the CWS and hence turns out to be a homotopy invariant among regular domains in 3-space. Last, we provide an iterative scheme which we show converges weakly in [math]-topology to elements of the kernel of the Biot–Savart operator.\",\"PeriodicalId\":51150,\"journal\":{\"name\":\"SIAM Journal on Mathematical Analysis\",\"volume\":\"186 1\",\"pages\":\"\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2024-09-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"SIAM Journal on Mathematical Analysis\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1137/23m1615693\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"SIAM Journal on Mathematical Analysis","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1137/23m1615693","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

SIAM 数学分析期刊》,第 56 卷第 5 期,第 6446-6482 页,2024 年 10 月。 摘要。我们以等离子体核聚变恒星器设计为背景,研究了 Biot-Savart 算子的像和核的性质。我们首先证明,对于任何给定的线圈绕组面(CWS),Biot-Savart 算子的图象在 CWS 包围的等离子体域上定义的平方可积分谐波场空间中是[math]密集的。然后,我们证明,在底层等离子体域的适当邻域中具有谐波性的谐波场,实际上可以在任何[math]-norm 中通过 Biot-Savart 算子的像的元素来近似。在这项工作的第二部分,我们在谐波诺伊曼场空间和 Biot-Savart 算子核之间建立了明确的同构关系,这尤其意味着 Biot-Savart 算子核的维度与 CWS 的属相吻合,因此成为 3 空间中规则域之间的同调不变式。最后,我们提供了一个迭代方案,证明它在[数学]拓扑中弱收敛于毕奥-萨瓦特算子内核的元素。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Properties of the Biot–Savart Operator Acting on Surface Currents
SIAM Journal on Mathematical Analysis, Volume 56, Issue 5, Page 6446-6482, October 2024.
Abstract. We investigate properties of the image and kernel of the Biot–Savart operator in the context of stellarator designs for plasma fusion. We first show that for any given coil winding surface (CWS) the image of the Biot–Savart operator is [math]-dense in the space of square integrable harmonic fields defined on a plasma domain surrounded by the CWS. Then we show that harmonic fields which are harmonic in a proper neighborhood of the underlying plasma domain can in fact be approximated in any [math]-norm by elements of the image of the Biot–Savart operator. In the second part of this work we establish an explicit isomorphism between the space of harmonic Neumann fields and the kernel of the Biot–Savart operator which in particular implies that the dimension of the kernel of the Biot–Savart operator coincides with the genus of the CWS and hence turns out to be a homotopy invariant among regular domains in 3-space. Last, we provide an iterative scheme which we show converges weakly in [math]-topology to elements of the kernel of the Biot–Savart operator.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.30
自引率
5.00%
发文量
175
审稿时长
12 months
期刊介绍: SIAM Journal on Mathematical Analysis (SIMA) features research articles of the highest quality employing innovative analytical techniques to treat problems in the natural sciences. Every paper has content that is primarily analytical and that employs mathematical methods in such areas as partial differential equations, the calculus of variations, functional analysis, approximation theory, harmonic or wavelet analysis, or dynamical systems. Additionally, every paper relates to a model for natural phenomena in such areas as fluid mechanics, materials science, quantum mechanics, biology, mathematical physics, or to the computational analysis of such phenomena. Submission of a manuscript to a SIAM journal is representation by the author that the manuscript has not been published or submitted simultaneously for publication elsewhere. Typical papers for SIMA do not exceed 35 journal pages. Substantial deviations from this page limit require that the referees, editor, and editor-in-chief be convinced that the increased length is both required by the subject matter and justified by the quality of the paper.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信