RenderWorld:带有自监督 3D 标签的世界模型

Ziyang Yan, Wenzhen Dong, Yihua Shao, Yuhang Lu, Liu Haiyang, Jingwen Liu, Haozhe Wang, Zhe Wang, Yan Wang, Fabio Remondino, Yuexin Ma
{"title":"RenderWorld:带有自监督 3D 标签的世界模型","authors":"Ziyang Yan, Wenzhen Dong, Yihua Shao, Yuhang Lu, Liu Haiyang, Jingwen Liu, Haozhe Wang, Zhe Wang, Yan Wang, Fabio Remondino, Yuexin Ma","doi":"arxiv-2409.11356","DOIUrl":null,"url":null,"abstract":"End-to-end autonomous driving with vision-only is not only more\ncost-effective compared to LiDAR-vision fusion but also more reliable than\ntraditional methods. To achieve a economical and robust purely visual\nautonomous driving system, we propose RenderWorld, a vision-only end-to-end\nautonomous driving framework, which generates 3D occupancy labels using a\nself-supervised gaussian-based Img2Occ Module, then encodes the labels by\nAM-VAE, and uses world model for forecasting and planning. RenderWorld employs\nGaussian Splatting to represent 3D scenes and render 2D images greatly improves\nsegmentation accuracy and reduces GPU memory consumption compared with\nNeRF-based methods. By applying AM-VAE to encode air and non-air separately,\nRenderWorld achieves more fine-grained scene element representation, leading to\nstate-of-the-art performance in both 4D occupancy forecasting and motion\nplanning from autoregressive world model.","PeriodicalId":501130,"journal":{"name":"arXiv - CS - Computer Vision and Pattern Recognition","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"RenderWorld: World Model with Self-Supervised 3D Label\",\"authors\":\"Ziyang Yan, Wenzhen Dong, Yihua Shao, Yuhang Lu, Liu Haiyang, Jingwen Liu, Haozhe Wang, Zhe Wang, Yan Wang, Fabio Remondino, Yuexin Ma\",\"doi\":\"arxiv-2409.11356\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"End-to-end autonomous driving with vision-only is not only more\\ncost-effective compared to LiDAR-vision fusion but also more reliable than\\ntraditional methods. To achieve a economical and robust purely visual\\nautonomous driving system, we propose RenderWorld, a vision-only end-to-end\\nautonomous driving framework, which generates 3D occupancy labels using a\\nself-supervised gaussian-based Img2Occ Module, then encodes the labels by\\nAM-VAE, and uses world model for forecasting and planning. RenderWorld employs\\nGaussian Splatting to represent 3D scenes and render 2D images greatly improves\\nsegmentation accuracy and reduces GPU memory consumption compared with\\nNeRF-based methods. By applying AM-VAE to encode air and non-air separately,\\nRenderWorld achieves more fine-grained scene element representation, leading to\\nstate-of-the-art performance in both 4D occupancy forecasting and motion\\nplanning from autoregressive world model.\",\"PeriodicalId\":501130,\"journal\":{\"name\":\"arXiv - CS - Computer Vision and Pattern Recognition\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - CS - Computer Vision and Pattern Recognition\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.11356\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Computer Vision and Pattern Recognition","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.11356","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

与激光雷达-视觉融合相比,纯视觉端到端自动驾驶不仅更具成本效益,而且比传统方法更可靠。为了实现经济、稳健的纯视觉自动驾驶系统,我们提出了纯视觉端到端自动驾驶框架 RenderWorld,它使用基于高斯的自我监督 Img2Occ 模块生成三维占位标签,然后通过AM-VAE 对标签进行编码,并使用世界模型进行预测和规划。与基于核射频的方法相比,RenderWorld 采用高斯拼接法来表示三维场景和渲染二维图像,大大提高了分割精度并减少了 GPU 内存消耗。通过应用 AM-VAE 对空气和非空气进行单独编码,RenderWorld 实现了更精细的场景元素表示,从而在 4D 占用率预测和自回归世界模型的运动规划方面都达到了最先进的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
RenderWorld: World Model with Self-Supervised 3D Label
End-to-end autonomous driving with vision-only is not only more cost-effective compared to LiDAR-vision fusion but also more reliable than traditional methods. To achieve a economical and robust purely visual autonomous driving system, we propose RenderWorld, a vision-only end-to-end autonomous driving framework, which generates 3D occupancy labels using a self-supervised gaussian-based Img2Occ Module, then encodes the labels by AM-VAE, and uses world model for forecasting and planning. RenderWorld employs Gaussian Splatting to represent 3D scenes and render 2D images greatly improves segmentation accuracy and reduces GPU memory consumption compared with NeRF-based methods. By applying AM-VAE to encode air and non-air separately, RenderWorld achieves more fine-grained scene element representation, leading to state-of-the-art performance in both 4D occupancy forecasting and motion planning from autoregressive world model.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信