菲迪亚斯利用参考增强扩散从文本、图像和三维条件创建三维内容的生成模型

Zhenwei Wang, Tengfei Wang, Zexin He, Gerhard Hancke, Ziwei Liu, Rynson W. H. Lau
{"title":"菲迪亚斯利用参考增强扩散从文本、图像和三维条件创建三维内容的生成模型","authors":"Zhenwei Wang, Tengfei Wang, Zexin He, Gerhard Hancke, Ziwei Liu, Rynson W. H. Lau","doi":"arxiv-2409.11406","DOIUrl":null,"url":null,"abstract":"In 3D modeling, designers often use an existing 3D model as a reference to\ncreate new ones. This practice has inspired the development of Phidias, a novel\ngenerative model that uses diffusion for reference-augmented 3D generation.\nGiven an image, our method leverages a retrieved or user-provided 3D reference\nmodel to guide the generation process, thereby enhancing the generation\nquality, generalization ability, and controllability. Our model integrates\nthree key components: 1) meta-ControlNet that dynamically modulates the\nconditioning strength, 2) dynamic reference routing that mitigates misalignment\nbetween the input image and 3D reference, and 3) self-reference augmentations\nthat enable self-supervised training with a progressive curriculum.\nCollectively, these designs result in a clear improvement over existing\nmethods. Phidias establishes a unified framework for 3D generation using text,\nimage, and 3D conditions with versatile applications.","PeriodicalId":501130,"journal":{"name":"arXiv - CS - Computer Vision and Pattern Recognition","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Phidias: A Generative Model for Creating 3D Content from Text, Image, and 3D Conditions with Reference-Augmented Diffusion\",\"authors\":\"Zhenwei Wang, Tengfei Wang, Zexin He, Gerhard Hancke, Ziwei Liu, Rynson W. H. Lau\",\"doi\":\"arxiv-2409.11406\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In 3D modeling, designers often use an existing 3D model as a reference to\\ncreate new ones. This practice has inspired the development of Phidias, a novel\\ngenerative model that uses diffusion for reference-augmented 3D generation.\\nGiven an image, our method leverages a retrieved or user-provided 3D reference\\nmodel to guide the generation process, thereby enhancing the generation\\nquality, generalization ability, and controllability. Our model integrates\\nthree key components: 1) meta-ControlNet that dynamically modulates the\\nconditioning strength, 2) dynamic reference routing that mitigates misalignment\\nbetween the input image and 3D reference, and 3) self-reference augmentations\\nthat enable self-supervised training with a progressive curriculum.\\nCollectively, these designs result in a clear improvement over existing\\nmethods. Phidias establishes a unified framework for 3D generation using text,\\nimage, and 3D conditions with versatile applications.\",\"PeriodicalId\":501130,\"journal\":{\"name\":\"arXiv - CS - Computer Vision and Pattern Recognition\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - CS - Computer Vision and Pattern Recognition\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.11406\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Computer Vision and Pattern Recognition","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.11406","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在三维建模中,设计师经常使用现有的三维模型作为参考来创建新模型。我们的方法利用检索到的或用户提供的三维参考模型来指导生成过程,从而提高生成质量、泛化能力和可控性。我们的模型集成了三个关键组件:1)元控制网(meta-ControlNet)可动态调节条件强度;2)动态参考路由(dynamic reference routing)可减轻输入图像与三维参考之间的错位;3)自我参考增强(self-reference augmentation)可通过渐进式课程实现自我监督训练。Phidias 建立了一个利用文本、图像和三维条件进行三维生成的统一框架,具有广泛的应用前景。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Phidias: A Generative Model for Creating 3D Content from Text, Image, and 3D Conditions with Reference-Augmented Diffusion
In 3D modeling, designers often use an existing 3D model as a reference to create new ones. This practice has inspired the development of Phidias, a novel generative model that uses diffusion for reference-augmented 3D generation. Given an image, our method leverages a retrieved or user-provided 3D reference model to guide the generation process, thereby enhancing the generation quality, generalization ability, and controllability. Our model integrates three key components: 1) meta-ControlNet that dynamically modulates the conditioning strength, 2) dynamic reference routing that mitigates misalignment between the input image and 3D reference, and 3) self-reference augmentations that enable self-supervised training with a progressive curriculum. Collectively, these designs result in a clear improvement over existing methods. Phidias establishes a unified framework for 3D generation using text, image, and 3D conditions with versatile applications.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信