EventAug:基于事件学习的多方面时空数据增强方法

Yukun Tian, Hao Chen, Yongjian Deng, Feihong Shen, Kepan Liu, Wei You, Ziyang Zhang
{"title":"EventAug:基于事件学习的多方面时空数据增强方法","authors":"Yukun Tian, Hao Chen, Yongjian Deng, Feihong Shen, Kepan Liu, Wei You, Ziyang Zhang","doi":"arxiv-2409.11813","DOIUrl":null,"url":null,"abstract":"The event camera has demonstrated significant success across a wide range of\nareas due to its low time latency and high dynamic range. However, the\ncommunity faces challenges such as data deficiency and limited diversity, often\nresulting in over-fitting and inadequate feature learning. Notably, the\nexploration of data augmentation techniques in the event community remains\nscarce. This work aims to address this gap by introducing a systematic\naugmentation scheme named EventAug to enrich spatial-temporal diversity. In\nparticular, we first propose Multi-scale Temporal Integration (MSTI) to\ndiversify the motion speed of objects, then introduce Spatial-salient Event\nMask (SSEM) and Temporal-salient Event Mask (TSEM) to enrich object variants.\nOur EventAug can facilitate models learning with richer motion patterns, object\nvariants and local spatio-temporal relations, thus improving model robustness\nto varied moving speeds, occlusions, and action disruptions. Experiment results\nshow that our augmentation method consistently yields significant improvements\nacross different tasks and backbones (e.g., a 4.87% accuracy gain on DVS128\nGesture). Our code will be publicly available for this community.","PeriodicalId":501130,"journal":{"name":"arXiv - CS - Computer Vision and Pattern Recognition","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"EventAug: Multifaceted Spatio-Temporal Data Augmentation Methods for Event-based Learning\",\"authors\":\"Yukun Tian, Hao Chen, Yongjian Deng, Feihong Shen, Kepan Liu, Wei You, Ziyang Zhang\",\"doi\":\"arxiv-2409.11813\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The event camera has demonstrated significant success across a wide range of\\nareas due to its low time latency and high dynamic range. However, the\\ncommunity faces challenges such as data deficiency and limited diversity, often\\nresulting in over-fitting and inadequate feature learning. Notably, the\\nexploration of data augmentation techniques in the event community remains\\nscarce. This work aims to address this gap by introducing a systematic\\naugmentation scheme named EventAug to enrich spatial-temporal diversity. In\\nparticular, we first propose Multi-scale Temporal Integration (MSTI) to\\ndiversify the motion speed of objects, then introduce Spatial-salient Event\\nMask (SSEM) and Temporal-salient Event Mask (TSEM) to enrich object variants.\\nOur EventAug can facilitate models learning with richer motion patterns, object\\nvariants and local spatio-temporal relations, thus improving model robustness\\nto varied moving speeds, occlusions, and action disruptions. Experiment results\\nshow that our augmentation method consistently yields significant improvements\\nacross different tasks and backbones (e.g., a 4.87% accuracy gain on DVS128\\nGesture). Our code will be publicly available for this community.\",\"PeriodicalId\":501130,\"journal\":{\"name\":\"arXiv - CS - Computer Vision and Pattern Recognition\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - CS - Computer Vision and Pattern Recognition\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.11813\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Computer Vision and Pattern Recognition","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.11813","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

事件相机因其低时间延迟和高动态范围而在众多领域取得了巨大成功。然而,该领域面临着数据不足和多样性有限等挑战,往往导致过度拟合和特征学习不足。值得注意的是,事件社区对数据增强技术的探索仍然匮乏。这项工作旨在通过引入一种名为 EventAug 的系统增强方案来填补这一空白,从而丰富时空多样性。具体而言,我们首先提出了多尺度时空整合(MSTI)来分散物体的运动速度,然后引入空间梯度事件掩码(SSEM)和时间梯度事件掩码(TSEM)来丰富物体的变体。我们的 EventAug 可以促进模型学习更丰富的运动模式、物体变体和局部时空关系,从而提高模型对不同运动速度、遮挡和动作干扰的鲁棒性。实验结果表明,我们的增强方法在不同任务和骨干上都有显著提高(例如,在 DVS128Gesture 上的准确率提高了 4.87%)。我们的代码将面向社会公开。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
EventAug: Multifaceted Spatio-Temporal Data Augmentation Methods for Event-based Learning
The event camera has demonstrated significant success across a wide range of areas due to its low time latency and high dynamic range. However, the community faces challenges such as data deficiency and limited diversity, often resulting in over-fitting and inadequate feature learning. Notably, the exploration of data augmentation techniques in the event community remains scarce. This work aims to address this gap by introducing a systematic augmentation scheme named EventAug to enrich spatial-temporal diversity. In particular, we first propose Multi-scale Temporal Integration (MSTI) to diversify the motion speed of objects, then introduce Spatial-salient Event Mask (SSEM) and Temporal-salient Event Mask (TSEM) to enrich object variants. Our EventAug can facilitate models learning with richer motion patterns, object variants and local spatio-temporal relations, thus improving model robustness to varied moving speeds, occlusions, and action disruptions. Experiment results show that our augmentation method consistently yields significant improvements across different tasks and backbones (e.g., a 4.87% accuracy gain on DVS128 Gesture). Our code will be publicly available for this community.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信