寻找主观真相:为人工智能模型综合评估收集 200 万张选票

Dimitrios Christodoulou, Mads Kuhlmann-Jørgensen
{"title":"寻找主观真相:为人工智能模型综合评估收集 200 万张选票","authors":"Dimitrios Christodoulou, Mads Kuhlmann-Jørgensen","doi":"arxiv-2409.11904","DOIUrl":null,"url":null,"abstract":"Efficiently evaluating the performance of text-to-image models is difficult\nas it inherently requires subjective judgment and human preference, making it\nhard to compare different models and quantify the state of the art. Leveraging\nRapidata's technology, we present an efficient annotation framework that\nsources human feedback from a diverse, global pool of annotators. Our study\ncollected over 2 million annotations across 4,512 images, evaluating four\nprominent models (DALL-E 3, Flux.1, MidJourney, and Stable Diffusion) on style\npreference, coherence, and text-to-image alignment. We demonstrate that our\napproach makes it feasible to comprehensively rank image generation models\nbased on a vast pool of annotators and show that the diverse annotator\ndemographics reflect the world population, significantly decreasing the risk of\nbiases.","PeriodicalId":501130,"journal":{"name":"arXiv - CS - Computer Vision and Pattern Recognition","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Finding the Subjective Truth: Collecting 2 Million Votes for Comprehensive Gen-AI Model Evaluation\",\"authors\":\"Dimitrios Christodoulou, Mads Kuhlmann-Jørgensen\",\"doi\":\"arxiv-2409.11904\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Efficiently evaluating the performance of text-to-image models is difficult\\nas it inherently requires subjective judgment and human preference, making it\\nhard to compare different models and quantify the state of the art. Leveraging\\nRapidata's technology, we present an efficient annotation framework that\\nsources human feedback from a diverse, global pool of annotators. Our study\\ncollected over 2 million annotations across 4,512 images, evaluating four\\nprominent models (DALL-E 3, Flux.1, MidJourney, and Stable Diffusion) on style\\npreference, coherence, and text-to-image alignment. We demonstrate that our\\napproach makes it feasible to comprehensively rank image generation models\\nbased on a vast pool of annotators and show that the diverse annotator\\ndemographics reflect the world population, significantly decreasing the risk of\\nbiases.\",\"PeriodicalId\":501130,\"journal\":{\"name\":\"arXiv - CS - Computer Vision and Pattern Recognition\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - CS - Computer Vision and Pattern Recognition\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.11904\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Computer Vision and Pattern Recognition","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.11904","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

对文本到图像模型的性能进行有效评估十分困难,因为它本质上需要主观判断和人类偏好,因此很难对不同模型进行比较,也很难量化技术水平。利用 Rapidata 的技术,我们提出了一个高效的注释框架,该框架从多样化的全球注释者池中获取人类反馈。我们的研究收集了 4,512 张图片上的 200 多万条注释,对四种主要模型(DALL-E 3、Flux.1、MidJourney 和 Stable Diffusion)的风格偏好、连贯性和文本与图片的一致性进行了评估。我们证明,我们的方法可以在大量注释者的基础上对图像生成模型进行综合排名,并表明注释者的人口统计学特征反映了世界人口的多样性,从而大大降低了偏差风险。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Finding the Subjective Truth: Collecting 2 Million Votes for Comprehensive Gen-AI Model Evaluation
Efficiently evaluating the performance of text-to-image models is difficult as it inherently requires subjective judgment and human preference, making it hard to compare different models and quantify the state of the art. Leveraging Rapidata's technology, we present an efficient annotation framework that sources human feedback from a diverse, global pool of annotators. Our study collected over 2 million annotations across 4,512 images, evaluating four prominent models (DALL-E 3, Flux.1, MidJourney, and Stable Diffusion) on style preference, coherence, and text-to-image alignment. We demonstrate that our approach makes it feasible to comprehensively rank image generation models based on a vast pool of annotators and show that the diverse annotator demographics reflect the world population, significantly decreasing the risk of biases.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信