揭开黑盒的面纱:鸟瞰感知模型的独立功能模块评估

Ludan Zhang, Xiaokang Ding, Yuqi Dai, Lei He, Keqiang Li
{"title":"揭开黑盒的面纱:鸟瞰感知模型的独立功能模块评估","authors":"Ludan Zhang, Xiaokang Ding, Yuqi Dai, Lei He, Keqiang Li","doi":"arxiv-2409.11969","DOIUrl":null,"url":null,"abstract":"End-to-end models are emerging as the mainstream in autonomous driving\nperception. However, the inability to meticulously deconstruct their internal\nmechanisms results in diminished development efficacy and impedes the\nestablishment of trust. Pioneering in the issue, we present the Independent\nFunctional Module Evaluation for Bird's-Eye-View Perception Model (BEV-IFME), a\nnovel framework that juxtaposes the module's feature maps against Ground Truth\nwithin a unified semantic Representation Space to quantify their similarity,\nthereby assessing the training maturity of individual functional modules. The\ncore of the framework lies in the process of feature map encoding and\nrepresentation aligning, facilitated by our proposed two-stage Alignment\nAutoEncoder, which ensures the preservation of salient information and the\nconsistency of feature structure. The metric for evaluating the training\nmaturity of functional modules, Similarity Score, demonstrates a robust\npositive correlation with BEV metrics, with an average correlation coefficient\nof 0.9387, attesting to the framework's reliability for assessment purposes.","PeriodicalId":501130,"journal":{"name":"arXiv - CS - Computer Vision and Pattern Recognition","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Unveiling the Black Box: Independent Functional Module Evaluation for Bird's-Eye-View Perception Model\",\"authors\":\"Ludan Zhang, Xiaokang Ding, Yuqi Dai, Lei He, Keqiang Li\",\"doi\":\"arxiv-2409.11969\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"End-to-end models are emerging as the mainstream in autonomous driving\\nperception. However, the inability to meticulously deconstruct their internal\\nmechanisms results in diminished development efficacy and impedes the\\nestablishment of trust. Pioneering in the issue, we present the Independent\\nFunctional Module Evaluation for Bird's-Eye-View Perception Model (BEV-IFME), a\\nnovel framework that juxtaposes the module's feature maps against Ground Truth\\nwithin a unified semantic Representation Space to quantify their similarity,\\nthereby assessing the training maturity of individual functional modules. The\\ncore of the framework lies in the process of feature map encoding and\\nrepresentation aligning, facilitated by our proposed two-stage Alignment\\nAutoEncoder, which ensures the preservation of salient information and the\\nconsistency of feature structure. The metric for evaluating the training\\nmaturity of functional modules, Similarity Score, demonstrates a robust\\npositive correlation with BEV metrics, with an average correlation coefficient\\nof 0.9387, attesting to the framework's reliability for assessment purposes.\",\"PeriodicalId\":501130,\"journal\":{\"name\":\"arXiv - CS - Computer Vision and Pattern Recognition\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - CS - Computer Vision and Pattern Recognition\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.11969\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Computer Vision and Pattern Recognition","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.11969","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

端到端模型正在成为自动驾驶感知领域的主流。然而,由于无法细致地解构其内部机制,导致开发效率降低,并阻碍了信任的建立。在这一问题上,我们率先提出了鸟瞰感知模型的独立功能模块评估(BEV-IFME),这是一个新颖的框架,它将模块的特征图与统一语义表征空间中的地面真理(Ground Truth)并列,量化它们的相似性,从而评估单个功能模块的训练成熟度。该框架的核心在于特征图编码和表征对齐的过程,我们提出的两阶段对齐自动编码器(AlignmentAutoEncoder)确保了突出信息的保留和特征结构的一致性。评估功能模块训练成熟度的指标 "相似度得分 "与 BEV 指标呈稳健的正相关,平均相关系数为 0.9387,证明了该框架在评估方面的可靠性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Unveiling the Black Box: Independent Functional Module Evaluation for Bird's-Eye-View Perception Model
End-to-end models are emerging as the mainstream in autonomous driving perception. However, the inability to meticulously deconstruct their internal mechanisms results in diminished development efficacy and impedes the establishment of trust. Pioneering in the issue, we present the Independent Functional Module Evaluation for Bird's-Eye-View Perception Model (BEV-IFME), a novel framework that juxtaposes the module's feature maps against Ground Truth within a unified semantic Representation Space to quantify their similarity, thereby assessing the training maturity of individual functional modules. The core of the framework lies in the process of feature map encoding and representation aligning, facilitated by our proposed two-stage Alignment AutoEncoder, which ensures the preservation of salient information and the consistency of feature structure. The metric for evaluating the training maturity of functional modules, Similarity Score, demonstrates a robust positive correlation with BEV metrics, with an average correlation coefficient of 0.9387, attesting to the framework's reliability for assessment purposes.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信