通过跨模态反向神经渲染进行术中配准

Maximilian Fehrentz, Mohammad Farid Azampour, Reuben Dorent, Hassan Rasheed, Colin Galvin, Alexandra Golby, William M. Wells, Sarah Frisken, Nassir Navab, Nazim Haouchine
{"title":"通过跨模态反向神经渲染进行术中配准","authors":"Maximilian Fehrentz, Mohammad Farid Azampour, Reuben Dorent, Hassan Rasheed, Colin Galvin, Alexandra Golby, William M. Wells, Sarah Frisken, Nassir Navab, Nazim Haouchine","doi":"arxiv-2409.11983","DOIUrl":null,"url":null,"abstract":"We present in this paper a novel approach for 3D/2D intraoperative\nregistration during neurosurgery via cross-modal inverse neural rendering. Our\napproach separates implicit neural representation into two components, handling\nanatomical structure preoperatively and appearance intraoperatively. This\ndisentanglement is achieved by controlling a Neural Radiance Field's appearance\nwith a multi-style hypernetwork. Once trained, the implicit neural\nrepresentation serves as a differentiable rendering engine, which can be used\nto estimate the surgical camera pose by minimizing the dissimilarity between\nits rendered images and the target intraoperative image. We tested our method\non retrospective patients' data from clinical cases, showing that our method\noutperforms state-of-the-art while meeting current clinical standards for\nregistration. Code and additional resources can be found at\nhttps://maxfehrentz.github.io/style-ngp/.","PeriodicalId":501130,"journal":{"name":"arXiv - CS - Computer Vision and Pattern Recognition","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Intraoperative Registration by Cross-Modal Inverse Neural Rendering\",\"authors\":\"Maximilian Fehrentz, Mohammad Farid Azampour, Reuben Dorent, Hassan Rasheed, Colin Galvin, Alexandra Golby, William M. Wells, Sarah Frisken, Nassir Navab, Nazim Haouchine\",\"doi\":\"arxiv-2409.11983\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present in this paper a novel approach for 3D/2D intraoperative\\nregistration during neurosurgery via cross-modal inverse neural rendering. Our\\napproach separates implicit neural representation into two components, handling\\nanatomical structure preoperatively and appearance intraoperatively. This\\ndisentanglement is achieved by controlling a Neural Radiance Field's appearance\\nwith a multi-style hypernetwork. Once trained, the implicit neural\\nrepresentation serves as a differentiable rendering engine, which can be used\\nto estimate the surgical camera pose by minimizing the dissimilarity between\\nits rendered images and the target intraoperative image. We tested our method\\non retrospective patients' data from clinical cases, showing that our method\\noutperforms state-of-the-art while meeting current clinical standards for\\nregistration. Code and additional resources can be found at\\nhttps://maxfehrentz.github.io/style-ngp/.\",\"PeriodicalId\":501130,\"journal\":{\"name\":\"arXiv - CS - Computer Vision and Pattern Recognition\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - CS - Computer Vision and Pattern Recognition\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.11983\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Computer Vision and Pattern Recognition","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.11983","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们在本文中介绍了一种在神经外科手术中通过跨模态反向神经渲染进行 3D/2D 术中定位的新方法。我们的方法将隐式神经表征分离成两个部分,即术前处理解剖结构和术中处理外观。这种分离是通过使用多风格超网络控制神经辐射场的外观来实现的。训练完成后,隐式神经呈现可作为可区分的渲染引擎,通过最小化其渲染图像与术中目标图像之间的不相似度来估计手术相机的姿势。我们在临床病例的回顾性患者数据上测试了我们的方法,结果表明我们的方法优于最先进的方法,同时符合当前的临床注册标准。代码和其他资源可在https://maxfehrentz.github.io/style-ngp/。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Intraoperative Registration by Cross-Modal Inverse Neural Rendering
We present in this paper a novel approach for 3D/2D intraoperative registration during neurosurgery via cross-modal inverse neural rendering. Our approach separates implicit neural representation into two components, handling anatomical structure preoperatively and appearance intraoperatively. This disentanglement is achieved by controlling a Neural Radiance Field's appearance with a multi-style hypernetwork. Once trained, the implicit neural representation serves as a differentiable rendering engine, which can be used to estimate the surgical camera pose by minimizing the dissimilarity between its rendered images and the target intraoperative image. We tested our method on retrospective patients' data from clinical cases, showing that our method outperforms state-of-the-art while meeting current clinical standards for registration. Code and additional resources can be found at https://maxfehrentz.github.io/style-ngp/.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信