全景深度预测

Juana Valeria Hurtado, Riya Mohan, Abhinav Valada
{"title":"全景深度预测","authors":"Juana Valeria Hurtado, Riya Mohan, Abhinav Valada","doi":"arxiv-2409.12008","DOIUrl":null,"url":null,"abstract":"Forecasting the semantics and 3D structure of scenes is essential for robots\nto navigate and plan actions safely. Recent methods have explored semantic and\npanoptic scene forecasting; however, they do not consider the geometry of the\nscene. In this work, we propose the panoptic-depth forecasting task for jointly\npredicting the panoptic segmentation and depth maps of unobserved future\nframes, from monocular camera images. To facilitate this work, we extend the\npopular KITTI-360 and Cityscapes benchmarks by computing depth maps from LiDAR\npoint clouds and leveraging sequential labeled data. We also introduce a\nsuitable evaluation metric that quantifies both the panoptic quality and depth\nestimation accuracy of forecasts in a coherent manner. Furthermore, we present\ntwo baselines and propose the novel PDcast architecture that learns rich\nspatio-temporal representations by incorporating a transformer-based encoder, a\nforecasting module, and task-specific decoders to predict future panoptic-depth\noutputs. Extensive evaluations demonstrate the effectiveness of PDcast across\ntwo datasets and three forecasting tasks, consistently addressing the primary\nchallenges. We make the code publicly available at\nhttps://pdcast.cs.uni-freiburg.de.","PeriodicalId":501130,"journal":{"name":"arXiv - CS - Computer Vision and Pattern Recognition","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Panoptic-Depth Forecasting\",\"authors\":\"Juana Valeria Hurtado, Riya Mohan, Abhinav Valada\",\"doi\":\"arxiv-2409.12008\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Forecasting the semantics and 3D structure of scenes is essential for robots\\nto navigate and plan actions safely. Recent methods have explored semantic and\\npanoptic scene forecasting; however, they do not consider the geometry of the\\nscene. In this work, we propose the panoptic-depth forecasting task for jointly\\npredicting the panoptic segmentation and depth maps of unobserved future\\nframes, from monocular camera images. To facilitate this work, we extend the\\npopular KITTI-360 and Cityscapes benchmarks by computing depth maps from LiDAR\\npoint clouds and leveraging sequential labeled data. We also introduce a\\nsuitable evaluation metric that quantifies both the panoptic quality and depth\\nestimation accuracy of forecasts in a coherent manner. Furthermore, we present\\ntwo baselines and propose the novel PDcast architecture that learns rich\\nspatio-temporal representations by incorporating a transformer-based encoder, a\\nforecasting module, and task-specific decoders to predict future panoptic-depth\\noutputs. Extensive evaluations demonstrate the effectiveness of PDcast across\\ntwo datasets and three forecasting tasks, consistently addressing the primary\\nchallenges. We make the code publicly available at\\nhttps://pdcast.cs.uni-freiburg.de.\",\"PeriodicalId\":501130,\"journal\":{\"name\":\"arXiv - CS - Computer Vision and Pattern Recognition\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - CS - Computer Vision and Pattern Recognition\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.12008\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Computer Vision and Pattern Recognition","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.12008","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

预测场景的语义和三维结构对于机器人安全导航和规划行动至关重要。最近的方法已经探索了语义和全视角场景预测,但是它们没有考虑场景的几何结构。在这项工作中,我们提出了全景深度预测任务,用于从单目摄像机图像中联合预测未观察到的未来帧的全景分割和深度图。为了促进这项工作,我们扩展了流行的 KITTI-360 和 Cityscapes 基准,通过激光雷达点云计算深度图,并利用连续标记数据。我们还引入了合适的评估指标,以一致的方式量化预测的全景质量和深度估计精度。此外,我们提出了两个基线,并提出了新颖的 PDcast 架构,该架构通过整合基于变压器的编码器、前述预测模块和特定任务解码器来学习丰富的时空表示,从而预测未来的全景深度输出。广泛的评估证明了 PDcast 在两个数据集和三个预测任务中的有效性,始终如一地解决了主要挑战。我们公开了代码,网址是:https://pdcast.cs.uni-freiburg.de。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Panoptic-Depth Forecasting
Forecasting the semantics and 3D structure of scenes is essential for robots to navigate and plan actions safely. Recent methods have explored semantic and panoptic scene forecasting; however, they do not consider the geometry of the scene. In this work, we propose the panoptic-depth forecasting task for jointly predicting the panoptic segmentation and depth maps of unobserved future frames, from monocular camera images. To facilitate this work, we extend the popular KITTI-360 and Cityscapes benchmarks by computing depth maps from LiDAR point clouds and leveraging sequential labeled data. We also introduce a suitable evaluation metric that quantifies both the panoptic quality and depth estimation accuracy of forecasts in a coherent manner. Furthermore, we present two baselines and propose the novel PDcast architecture that learns rich spatio-temporal representations by incorporating a transformer-based encoder, a forecasting module, and task-specific decoders to predict future panoptic-depth outputs. Extensive evaluations demonstrate the effectiveness of PDcast across two datasets and three forecasting tasks, consistently addressing the primary challenges. We make the code publicly available at https://pdcast.cs.uni-freiburg.de.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信