SFDA-rPPG:具有时空一致性的无源域自适应远程生理测量技术

Yiping Xie, Zitong Yu, Bingjie Wu, Weicheng Xie, Linlin Shen
{"title":"SFDA-rPPG:具有时空一致性的无源域自适应远程生理测量技术","authors":"Yiping Xie, Zitong Yu, Bingjie Wu, Weicheng Xie, Linlin Shen","doi":"arxiv-2409.12040","DOIUrl":null,"url":null,"abstract":"Remote Photoplethysmography (rPPG) is a non-contact method that uses facial\nvideo to predict changes in blood volume, enabling physiological metrics\nmeasurement. Traditional rPPG models often struggle with poor generalization\ncapacity in unseen domains. Current solutions to this problem is to improve its\ngeneralization in the target domain through Domain Generalization (DG) or\nDomain Adaptation (DA). However, both traditional methods require access to\nboth source domain data and target domain data, which cannot be implemented in\nscenarios with limited access to source data, and another issue is the privacy\nof accessing source domain data. In this paper, we propose the first\nSource-free Domain Adaptation benchmark for rPPG measurement (SFDA-rPPG), which\novercomes these limitations by enabling effective domain adaptation without\naccess to source domain data. Our framework incorporates a Three-Branch\nSpatio-Temporal Consistency Network (TSTC-Net) to enhance feature consistency\nacross domains. Furthermore, we propose a new rPPG distribution alignment loss\nbased on the Frequency-domain Wasserstein Distance (FWD), which leverages\noptimal transport to align power spectrum distributions across domains\neffectively and further enforces the alignment of the three branches. Extensive\ncross-domain experiments and ablation studies demonstrate the effectiveness of\nour proposed method in source-free domain adaptation settings. Our findings\nhighlight the significant contribution of the proposed FWD loss for\ndistributional alignment, providing a valuable reference for future research\nand applications. The source code is available at\nhttps://github.com/XieYiping66/SFDA-rPPG","PeriodicalId":501130,"journal":{"name":"arXiv - CS - Computer Vision and Pattern Recognition","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"SFDA-rPPG: Source-Free Domain Adaptive Remote Physiological Measurement with Spatio-Temporal Consistency\",\"authors\":\"Yiping Xie, Zitong Yu, Bingjie Wu, Weicheng Xie, Linlin Shen\",\"doi\":\"arxiv-2409.12040\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Remote Photoplethysmography (rPPG) is a non-contact method that uses facial\\nvideo to predict changes in blood volume, enabling physiological metrics\\nmeasurement. Traditional rPPG models often struggle with poor generalization\\ncapacity in unseen domains. Current solutions to this problem is to improve its\\ngeneralization in the target domain through Domain Generalization (DG) or\\nDomain Adaptation (DA). However, both traditional methods require access to\\nboth source domain data and target domain data, which cannot be implemented in\\nscenarios with limited access to source data, and another issue is the privacy\\nof accessing source domain data. In this paper, we propose the first\\nSource-free Domain Adaptation benchmark for rPPG measurement (SFDA-rPPG), which\\novercomes these limitations by enabling effective domain adaptation without\\naccess to source domain data. Our framework incorporates a Three-Branch\\nSpatio-Temporal Consistency Network (TSTC-Net) to enhance feature consistency\\nacross domains. Furthermore, we propose a new rPPG distribution alignment loss\\nbased on the Frequency-domain Wasserstein Distance (FWD), which leverages\\noptimal transport to align power spectrum distributions across domains\\neffectively and further enforces the alignment of the three branches. Extensive\\ncross-domain experiments and ablation studies demonstrate the effectiveness of\\nour proposed method in source-free domain adaptation settings. Our findings\\nhighlight the significant contribution of the proposed FWD loss for\\ndistributional alignment, providing a valuable reference for future research\\nand applications. The source code is available at\\nhttps://github.com/XieYiping66/SFDA-rPPG\",\"PeriodicalId\":501130,\"journal\":{\"name\":\"arXiv - CS - Computer Vision and Pattern Recognition\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - CS - Computer Vision and Pattern Recognition\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.12040\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Computer Vision and Pattern Recognition","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.12040","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

远程血压计(rPPG)是一种非接触式方法,利用面部视频来预测血容量的变化,从而实现生理指标的测量。传统的 rPPG 模型在未知领域的泛化能力较差。目前解决这一问题的方法是通过领域泛化(DG)或领域适应(DA)来提高其在目标领域的泛化能力。然而,这两种传统方法都需要同时访问源域数据和目标域数据,这在源数据访问受限的情况下无法实现,另一个问题是访问源域数据的隐私性。在本文中,我们提出了首个用于 rPPG 测量的无源域自适应基准(SFDA-rPPG),通过在不访问源域数据的情况下实现有效的域自适应,克服了这些限制。我们的框架采用了三分支时空一致性网络(TSTC-Net)来增强跨域特征一致性。此外,我们还基于频域瓦瑟斯坦距离(FWD)提出了一种新的 rPPG 分布对齐损耗,它利用最佳传输来有效地对齐跨域的功率谱分布,并进一步加强了三个分支的对齐。广泛的跨域实验和消融研究证明了我们提出的方法在无源域适应设置中的有效性。我们的研究结果凸显了所提出的 FWD 损失对分布式配准的重大贡献,为未来的研究和应用提供了宝贵的参考。源代码请访问:https://github.com/XieYiping66/SFDA-rPPG
本文章由计算机程序翻译,如有差异,请以英文原文为准。
SFDA-rPPG: Source-Free Domain Adaptive Remote Physiological Measurement with Spatio-Temporal Consistency
Remote Photoplethysmography (rPPG) is a non-contact method that uses facial video to predict changes in blood volume, enabling physiological metrics measurement. Traditional rPPG models often struggle with poor generalization capacity in unseen domains. Current solutions to this problem is to improve its generalization in the target domain through Domain Generalization (DG) or Domain Adaptation (DA). However, both traditional methods require access to both source domain data and target domain data, which cannot be implemented in scenarios with limited access to source data, and another issue is the privacy of accessing source domain data. In this paper, we propose the first Source-free Domain Adaptation benchmark for rPPG measurement (SFDA-rPPG), which overcomes these limitations by enabling effective domain adaptation without access to source domain data. Our framework incorporates a Three-Branch Spatio-Temporal Consistency Network (TSTC-Net) to enhance feature consistency across domains. Furthermore, we propose a new rPPG distribution alignment loss based on the Frequency-domain Wasserstein Distance (FWD), which leverages optimal transport to align power spectrum distributions across domains effectively and further enforces the alignment of the three branches. Extensive cross-domain experiments and ablation studies demonstrate the effectiveness of our proposed method in source-free domain adaptation settings. Our findings highlight the significant contribution of the proposed FWD loss for distributional alignment, providing a valuable reference for future research and applications. The source code is available at https://github.com/XieYiping66/SFDA-rPPG
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信