利用加权伯克霍夫平均数计算 Lyapunov 指数

E. Sander, J. D. Meiss
{"title":"利用加权伯克霍夫平均数计算 Lyapunov 指数","authors":"E. Sander, J. D. Meiss","doi":"arxiv-2409.08496","DOIUrl":null,"url":null,"abstract":"The Lyapunov exponents of a dynamical system measure the average rate of\nexponential stretching along an orbit. Positive exponents are often taken as a\ndefining characteristic of chaotic dynamics. However, the standard\northogonalization-based method for computing Lyapunov exponents converges\nslowly -- if at all. Many alternatively techniques have been developed to\ndistinguish between regular and chaotic orbits, though most do not compute the\nexponents. We compute the Lyapunov spectrum in three ways: the standard method,\nthe weighted Birkhoff average (WBA), and the ``mean exponential growth rate for\nnearby orbits'' (MEGNO). The latter two improve convergence for nonchaotic\norbits, but the WBA is fastest. However, for chaotic orbits the three methods\nconvergence at similar, slow rates. Though the original MEGNO method does not\ncompute Lyapunov exponents, we show how to reformulate it as a weighted average\nthat does.","PeriodicalId":501035,"journal":{"name":"arXiv - MATH - Dynamical Systems","volume":"65 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Computing Lyapunov Exponents using Weighted Birkhoff Averages\",\"authors\":\"E. Sander, J. D. Meiss\",\"doi\":\"arxiv-2409.08496\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The Lyapunov exponents of a dynamical system measure the average rate of\\nexponential stretching along an orbit. Positive exponents are often taken as a\\ndefining characteristic of chaotic dynamics. However, the standard\\northogonalization-based method for computing Lyapunov exponents converges\\nslowly -- if at all. Many alternatively techniques have been developed to\\ndistinguish between regular and chaotic orbits, though most do not compute the\\nexponents. We compute the Lyapunov spectrum in three ways: the standard method,\\nthe weighted Birkhoff average (WBA), and the ``mean exponential growth rate for\\nnearby orbits'' (MEGNO). The latter two improve convergence for nonchaotic\\norbits, but the WBA is fastest. However, for chaotic orbits the three methods\\nconvergence at similar, slow rates. Though the original MEGNO method does not\\ncompute Lyapunov exponents, we show how to reformulate it as a weighted average\\nthat does.\",\"PeriodicalId\":501035,\"journal\":{\"name\":\"arXiv - MATH - Dynamical Systems\",\"volume\":\"65 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Dynamical Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.08496\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Dynamical Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.08496","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

动力学系统的李亚普诺夫指数衡量的是沿轨道的指数延伸的平均速率。正指数通常被视为混沌动力学的定义特征。然而,计算李亚普诺夫指数的基于正交化的标准方法收敛速度很慢(如果有的话)。为了区分规则轨道和混沌轨道,人们开发了许多替代技术,但大多数都不计算指数。我们用三种方法计算李雅普诺夫谱:标准方法、加权伯克霍夫平均法(WBA)和 "近邻轨道平均指数增长率"(MEGNO)。后两种方法提高了非混沌轨道的收敛性,但 WBA 最快。然而,对于混沌轨道,这三种方法的收敛速度相近,都很慢。虽然最初的 MEGNO 方法并不计算李亚普诺夫指数,但我们展示了如何将其重新表述为一种加权平均方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Computing Lyapunov Exponents using Weighted Birkhoff Averages
The Lyapunov exponents of a dynamical system measure the average rate of exponential stretching along an orbit. Positive exponents are often taken as a defining characteristic of chaotic dynamics. However, the standard orthogonalization-based method for computing Lyapunov exponents converges slowly -- if at all. Many alternatively techniques have been developed to distinguish between regular and chaotic orbits, though most do not compute the exponents. We compute the Lyapunov spectrum in three ways: the standard method, the weighted Birkhoff average (WBA), and the ``mean exponential growth rate for nearby orbits'' (MEGNO). The latter two improve convergence for nonchaotic orbits, but the WBA is fastest. However, for chaotic orbits the three methods convergence at similar, slow rates. Though the original MEGNO method does not compute Lyapunov exponents, we show how to reformulate it as a weighted average that does.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信