有限到一拓扑扩展的多变量均值连续性

Jonas Breitenbücher, Lino Haupt, Tobias Jäger
{"title":"有限到一拓扑扩展的多变量均值连续性","authors":"Jonas Breitenbücher, Lino Haupt, Tobias Jäger","doi":"arxiv-2409.08707","DOIUrl":null,"url":null,"abstract":"In this note, we generalise the concept of topo-isomorphic extensions and\ndefine finite topomorphic extensions as topological dynamical systems whose\nfactor map to the maximal equicontinuous factor is measure-theoretically at\nmost $m$-to-one for some $m\\in\\mathbb{N}$. We further define multivariate\nversions of mean equicontinuity, complementing the notion of multivariate mean\nsensitivity introduced by Li, Ye and Yu, and then show that any $m$-to-one\ntopomorphic extension is mean $(m+1)$-equicontinuous. This falls in line with\nthe well-known result, due to Downarowicz and Glasner, that strictly ergodic\nsystems are isomorphic extensions if and only if they are mean equicontinuous.\nWhile in the multivariate case we can only conjecture that the converse\ndirection also holds, the result provides an indication that multivariate\nequicontinuity properties are strongly related to finite extension structures.\nFor minimal systems, an Auslander-Yorke type dichotomy between multivariate\nmean equicontinuity and sensitivity is shown as well.","PeriodicalId":501035,"journal":{"name":"arXiv - MATH - Dynamical Systems","volume":"295 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Multivariate mean equicontinuity for finite-to-one topomorphic extensions\",\"authors\":\"Jonas Breitenbücher, Lino Haupt, Tobias Jäger\",\"doi\":\"arxiv-2409.08707\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this note, we generalise the concept of topo-isomorphic extensions and\\ndefine finite topomorphic extensions as topological dynamical systems whose\\nfactor map to the maximal equicontinuous factor is measure-theoretically at\\nmost $m$-to-one for some $m\\\\in\\\\mathbb{N}$. We further define multivariate\\nversions of mean equicontinuity, complementing the notion of multivariate mean\\nsensitivity introduced by Li, Ye and Yu, and then show that any $m$-to-one\\ntopomorphic extension is mean $(m+1)$-equicontinuous. This falls in line with\\nthe well-known result, due to Downarowicz and Glasner, that strictly ergodic\\nsystems are isomorphic extensions if and only if they are mean equicontinuous.\\nWhile in the multivariate case we can only conjecture that the converse\\ndirection also holds, the result provides an indication that multivariate\\nequicontinuity properties are strongly related to finite extension structures.\\nFor minimal systems, an Auslander-Yorke type dichotomy between multivariate\\nmean equicontinuity and sensitivity is shown as well.\",\"PeriodicalId\":501035,\"journal\":{\"name\":\"arXiv - MATH - Dynamical Systems\",\"volume\":\"295 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Dynamical Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.08707\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Dynamical Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.08707","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在本注释中,我们对拓扑同构扩展的概念进行了概括,并将有限拓扑同构扩展定义为拓扑动力系统,对于某个$m\in\mathbb{N}$,其因子映射到最大等连续因子在度量理论上至少是$m$-to-one。我们进一步定义了均值等连续性的多变量扩展,补充了李、叶和余引入的多变量均值敏感性的概念,然后证明任何 $m$ 对一的拓扑扩展都是均值 $(m+1)$ 等连续的。这与 Downarowicz 和 Glasner 提出的著名结果是一致的,即严格遍历系统是同构扩展,当且仅当它们是均值等连续的。虽然在多变量情况下,我们只能猜想对话方向也成立,但这一结果提供了一个指示,即多变量均值等连续性性质与有限扩展结构密切相关。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Multivariate mean equicontinuity for finite-to-one topomorphic extensions
In this note, we generalise the concept of topo-isomorphic extensions and define finite topomorphic extensions as topological dynamical systems whose factor map to the maximal equicontinuous factor is measure-theoretically at most $m$-to-one for some $m\in\mathbb{N}$. We further define multivariate versions of mean equicontinuity, complementing the notion of multivariate mean sensitivity introduced by Li, Ye and Yu, and then show that any $m$-to-one topomorphic extension is mean $(m+1)$-equicontinuous. This falls in line with the well-known result, due to Downarowicz and Glasner, that strictly ergodic systems are isomorphic extensions if and only if they are mean equicontinuous. While in the multivariate case we can only conjecture that the converse direction also holds, the result provides an indication that multivariate equicontinuity properties are strongly related to finite extension structures. For minimal systems, an Auslander-Yorke type dichotomy between multivariate mean equicontinuity and sensitivity is shown as well.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信