{"title":"定向反转同构迭代的定点索引","authors":"Grzegorz Graff, Patryk Topór","doi":"arxiv-2409.08753","DOIUrl":null,"url":null,"abstract":"We show that any sequence of integers satisfying necessary Dold's congruences\nis realized as the sequence of fixed point indices of the iterates of an\norientation-reversing homeomorphism of $\\mathbb{R}^{m}$ for $m\\geq 3$. As an\nelement of the construction of the above homeomorphism, we consider the class\nof boundary-preserving homeomorphisms of $\\mathbb{R}^{m}_{+}$ and give the\nanswer to [Problem 10.2, Topol. Methods Nonlinear Anal. 50 (2017), 643 - 667]\nproviding a complete description of the forms of fixed point indices for this\nclass of maps.","PeriodicalId":501035,"journal":{"name":"arXiv - MATH - Dynamical Systems","volume":"38 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Fixed point indices of iterates of orientation-reversing homeomorphisms\",\"authors\":\"Grzegorz Graff, Patryk Topór\",\"doi\":\"arxiv-2409.08753\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We show that any sequence of integers satisfying necessary Dold's congruences\\nis realized as the sequence of fixed point indices of the iterates of an\\norientation-reversing homeomorphism of $\\\\mathbb{R}^{m}$ for $m\\\\geq 3$. As an\\nelement of the construction of the above homeomorphism, we consider the class\\nof boundary-preserving homeomorphisms of $\\\\mathbb{R}^{m}_{+}$ and give the\\nanswer to [Problem 10.2, Topol. Methods Nonlinear Anal. 50 (2017), 643 - 667]\\nproviding a complete description of the forms of fixed point indices for this\\nclass of maps.\",\"PeriodicalId\":501035,\"journal\":{\"name\":\"arXiv - MATH - Dynamical Systems\",\"volume\":\"38 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Dynamical Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.08753\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Dynamical Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.08753","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Fixed point indices of iterates of orientation-reversing homeomorphisms
We show that any sequence of integers satisfying necessary Dold's congruences
is realized as the sequence of fixed point indices of the iterates of an
orientation-reversing homeomorphism of $\mathbb{R}^{m}$ for $m\geq 3$. As an
element of the construction of the above homeomorphism, we consider the class
of boundary-preserving homeomorphisms of $\mathbb{R}^{m}_{+}$ and give the
answer to [Problem 10.2, Topol. Methods Nonlinear Anal. 50 (2017), 643 - 667]
providing a complete description of the forms of fixed point indices for this
class of maps.