水平静止的广义布拉泰利图

Sergey Bezuglyi, Palle E. T. Jorgensen, Olena Karpel, Jan Kwiatkowski
{"title":"水平静止的广义布拉泰利图","authors":"Sergey Bezuglyi, Palle E. T. Jorgensen, Olena Karpel, Jan Kwiatkowski","doi":"arxiv-2409.10084","DOIUrl":null,"url":null,"abstract":"Bratteli diagrams with countably infinite levels exhibit a new phenomenon:\nthey can be horizontally stationary. The incidence matrices of these\nhorizontally stationary Bratteli diagrams are infinite banded Toeplitz\nmatrices. In this paper, we study the fundamental properties of horizontally\nstationary Bratteli diagrams. In these diagrams, we provide an explicit\ndescription of ergodic tail invariant probability measures. For a certain class\nof horizontally stationary Bratteli diagrams, we prove that all ergodic tail\ninvariant probability measures are extensions of measures from odometers.\nAdditionally, we establish conditions for the existence of a continuous Vershik\nmap on the path space of a horizontally stationary Bratteli diagram.","PeriodicalId":501035,"journal":{"name":"arXiv - MATH - Dynamical Systems","volume":"15 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Horizontally stationary generalized Bratteli diagrams\",\"authors\":\"Sergey Bezuglyi, Palle E. T. Jorgensen, Olena Karpel, Jan Kwiatkowski\",\"doi\":\"arxiv-2409.10084\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Bratteli diagrams with countably infinite levels exhibit a new phenomenon:\\nthey can be horizontally stationary. The incidence matrices of these\\nhorizontally stationary Bratteli diagrams are infinite banded Toeplitz\\nmatrices. In this paper, we study the fundamental properties of horizontally\\nstationary Bratteli diagrams. In these diagrams, we provide an explicit\\ndescription of ergodic tail invariant probability measures. For a certain class\\nof horizontally stationary Bratteli diagrams, we prove that all ergodic tail\\ninvariant probability measures are extensions of measures from odometers.\\nAdditionally, we establish conditions for the existence of a continuous Vershik\\nmap on the path space of a horizontally stationary Bratteli diagram.\",\"PeriodicalId\":501035,\"journal\":{\"name\":\"arXiv - MATH - Dynamical Systems\",\"volume\":\"15 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Dynamical Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.10084\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Dynamical Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.10084","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

具有可数无限级的布拉泰利图呈现出一种新现象:它们可以水平静止。这些水平静止的布拉泰利图的入射矩阵是无限带状的托普利兹矩阵。本文研究了水平静止布拉泰里图的基本性质。在这些图中,我们提供了对遍历尾不变概率量的明确描述。对于某一类水平静止的布拉泰里图,我们证明了所有的遍历尾不变概率量都是来自odometers的量的扩展。此外,我们还建立了水平静止布拉泰里图的路径空间上存在连续Vershikmap的条件。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Horizontally stationary generalized Bratteli diagrams
Bratteli diagrams with countably infinite levels exhibit a new phenomenon: they can be horizontally stationary. The incidence matrices of these horizontally stationary Bratteli diagrams are infinite banded Toeplitz matrices. In this paper, we study the fundamental properties of horizontally stationary Bratteli diagrams. In these diagrams, we provide an explicit description of ergodic tail invariant probability measures. For a certain class of horizontally stationary Bratteli diagrams, we prove that all ergodic tail invariant probability measures are extensions of measures from odometers. Additionally, we establish conditions for the existence of a continuous Vershik map on the path space of a horizontally stationary Bratteli diagram.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信