紧凑算子的熵以及关于熵和规范的结果

Paulo Lupatini, Felipe Silva, Régis Varão
{"title":"紧凑算子的熵以及关于熵和规范的结果","authors":"Paulo Lupatini, Felipe Silva, Régis Varão","doi":"arxiv-2409.10844","DOIUrl":null,"url":null,"abstract":"We prove that the specification property implies infinite topological entropy\nfor operators acting on infinite dimensional $F$-spaces. Furthermore, we\nestablish compact operators acting on Banach spaces exhibit finite entropy and\nthe entropy depends exclusively on the operator's point spectrum. Additionally,\nwe prove that the variational principle does not hold for compact operators\nacting on Banach spaces.","PeriodicalId":501035,"journal":{"name":"arXiv - MATH - Dynamical Systems","volume":"15 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Entropy for compact operators and results on entropy and specification\",\"authors\":\"Paulo Lupatini, Felipe Silva, Régis Varão\",\"doi\":\"arxiv-2409.10844\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We prove that the specification property implies infinite topological entropy\\nfor operators acting on infinite dimensional $F$-spaces. Furthermore, we\\nestablish compact operators acting on Banach spaces exhibit finite entropy and\\nthe entropy depends exclusively on the operator's point spectrum. Additionally,\\nwe prove that the variational principle does not hold for compact operators\\nacting on Banach spaces.\",\"PeriodicalId\":501035,\"journal\":{\"name\":\"arXiv - MATH - Dynamical Systems\",\"volume\":\"15 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Dynamical Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.10844\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Dynamical Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.10844","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们证明,对于作用于无限维$F$空间的算子,规范性质意味着无限拓扑熵。此外,我们还证明了作用于巴拿赫空间的紧凑算子表现出有限熵,并且熵完全取决于算子的点谱。此外,我们还证明了变分原理对于作用于巴拿赫空间的紧凑算子不成立。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Entropy for compact operators and results on entropy and specification
We prove that the specification property implies infinite topological entropy for operators acting on infinite dimensional $F$-spaces. Furthermore, we establish compact operators acting on Banach spaces exhibit finite entropy and the entropy depends exclusively on the operator's point spectrum. Additionally, we prove that the variational principle does not hold for compact operators acting on Banach spaces.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信