{"title":"1:1:2 共振加轴对称多项式扰动振荡器的还原与重构","authors":"Yocelyn Pérez Rothen, Claudio Vidal","doi":"10.1137/23m1621885","DOIUrl":null,"url":null,"abstract":"SIAM Journal on Applied Dynamical Systems, Volume 23, Issue 3, Page 2489-2532, September 2024. <br/> Abstract.We consider a family of perturbed Hamiltonian systems with Hamiltonian [math] in 1:1:2 resonance, where [math] is a polynomial which is axially symmetric with respect to the [math]-axis. Here, [math] is a homogeneous polynomial of degree [math], and we note that our analysis is carried out considering the polynomials [math] and [math]. We initially perform a Lie–Deprit normalization (truncation of the higher-order terms), and a singular reduction by the oscillator symmetry is done. Considering the averaging method for Hamiltonian systems, the existence and an approximation of two families of periodic solutions are proved together with their linear stability. A third family of periodic solutions is found by using the Lyapunov center theorem. In addition, the existence of KAM 3-tori is obtained by enclosing the stable periodic solutions. After that, since the Hamiltonian is axially symmetric, we carry out another reduction induced by this exact symmetry. Studying its Poisson vector field on the reduced space by the exact symmetry, we show the existence of two equilibrium points. We reconstruct these points as two families of periodic solutions of the complete Hamiltonian system together with their linear stability. Next, we make a second singular reduction using the axial symmetry. A geometrical study of the twice-reduced space is done to characterize the singularities. Precisely, we study the critical points (relative equilibria) on the twice-reduced space together with the stability, and parametric bifurcations are determined. The equilibria occurring in the twice-reduced space are reconstructed as 3-tori filled by quasi-periodic solutions of the full system. Our analysis permits us to determine the main representative parameters of the cubic ([math]) and quartic ([math]) terms to get our results. Important differences with the case of resonance 1:1:1 are detected.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Reduction and Reconstruction of the Oscillator in 1:1:2 Resonance plus an Axially Symmetric Polynomial Perturbation\",\"authors\":\"Yocelyn Pérez Rothen, Claudio Vidal\",\"doi\":\"10.1137/23m1621885\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"SIAM Journal on Applied Dynamical Systems, Volume 23, Issue 3, Page 2489-2532, September 2024. <br/> Abstract.We consider a family of perturbed Hamiltonian systems with Hamiltonian [math] in 1:1:2 resonance, where [math] is a polynomial which is axially symmetric with respect to the [math]-axis. Here, [math] is a homogeneous polynomial of degree [math], and we note that our analysis is carried out considering the polynomials [math] and [math]. We initially perform a Lie–Deprit normalization (truncation of the higher-order terms), and a singular reduction by the oscillator symmetry is done. Considering the averaging method for Hamiltonian systems, the existence and an approximation of two families of periodic solutions are proved together with their linear stability. A third family of periodic solutions is found by using the Lyapunov center theorem. In addition, the existence of KAM 3-tori is obtained by enclosing the stable periodic solutions. After that, since the Hamiltonian is axially symmetric, we carry out another reduction induced by this exact symmetry. Studying its Poisson vector field on the reduced space by the exact symmetry, we show the existence of two equilibrium points. We reconstruct these points as two families of periodic solutions of the complete Hamiltonian system together with their linear stability. Next, we make a second singular reduction using the axial symmetry. A geometrical study of the twice-reduced space is done to characterize the singularities. Precisely, we study the critical points (relative equilibria) on the twice-reduced space together with the stability, and parametric bifurcations are determined. The equilibria occurring in the twice-reduced space are reconstructed as 3-tori filled by quasi-periodic solutions of the full system. Our analysis permits us to determine the main representative parameters of the cubic ([math]) and quartic ([math]) terms to get our results. Important differences with the case of resonance 1:1:1 are detected.\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2024-09-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1137/23m1621885\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1137/23m1621885","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Reduction and Reconstruction of the Oscillator in 1:1:2 Resonance plus an Axially Symmetric Polynomial Perturbation
SIAM Journal on Applied Dynamical Systems, Volume 23, Issue 3, Page 2489-2532, September 2024. Abstract.We consider a family of perturbed Hamiltonian systems with Hamiltonian [math] in 1:1:2 resonance, where [math] is a polynomial which is axially symmetric with respect to the [math]-axis. Here, [math] is a homogeneous polynomial of degree [math], and we note that our analysis is carried out considering the polynomials [math] and [math]. We initially perform a Lie–Deprit normalization (truncation of the higher-order terms), and a singular reduction by the oscillator symmetry is done. Considering the averaging method for Hamiltonian systems, the existence and an approximation of two families of periodic solutions are proved together with their linear stability. A third family of periodic solutions is found by using the Lyapunov center theorem. In addition, the existence of KAM 3-tori is obtained by enclosing the stable periodic solutions. After that, since the Hamiltonian is axially symmetric, we carry out another reduction induced by this exact symmetry. Studying its Poisson vector field on the reduced space by the exact symmetry, we show the existence of two equilibrium points. We reconstruct these points as two families of periodic solutions of the complete Hamiltonian system together with their linear stability. Next, we make a second singular reduction using the axial symmetry. A geometrical study of the twice-reduced space is done to characterize the singularities. Precisely, we study the critical points (relative equilibria) on the twice-reduced space together with the stability, and parametric bifurcations are determined. The equilibria occurring in the twice-reduced space are reconstructed as 3-tori filled by quasi-periodic solutions of the full system. Our analysis permits us to determine the main representative parameters of the cubic ([math]) and quartic ([math]) terms to get our results. Important differences with the case of resonance 1:1:1 are detected.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.