全态对应的鲁埃尔算子

Shrihari Sridharan, Subith G
{"title":"全态对应的鲁埃尔算子","authors":"Shrihari Sridharan, Subith G","doi":"arxiv-2409.11085","DOIUrl":null,"url":null,"abstract":"In this paper, we extend the ideas of certain notions that one studies in\nthermodynamic formalism of maps to the context when the dynamics in the phase\nspace evolves by complex holomorphic correspondences. Towards that end, we\ndefine the topological entropy of holomorphic correspondences using spanning\nsets. We then, define the pressure of a real-valued continuous function defined\non the Riemann sphere and investigate the Ruelle operator with respect to the\nH\\\"{o}lder continuous function, however restricted on the support of the\nDinh-Sibony measure.","PeriodicalId":501035,"journal":{"name":"arXiv - MATH - Dynamical Systems","volume":"3 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Ruelle operator for holomorphic correspondences\",\"authors\":\"Shrihari Sridharan, Subith G\",\"doi\":\"arxiv-2409.11085\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we extend the ideas of certain notions that one studies in\\nthermodynamic formalism of maps to the context when the dynamics in the phase\\nspace evolves by complex holomorphic correspondences. Towards that end, we\\ndefine the topological entropy of holomorphic correspondences using spanning\\nsets. We then, define the pressure of a real-valued continuous function defined\\non the Riemann sphere and investigate the Ruelle operator with respect to the\\nH\\\\\\\"{o}lder continuous function, however restricted on the support of the\\nDinh-Sibony measure.\",\"PeriodicalId\":501035,\"journal\":{\"name\":\"arXiv - MATH - Dynamical Systems\",\"volume\":\"3 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Dynamical Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.11085\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Dynamical Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.11085","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在本文中,我们将在热力学形式主义中研究的某些映射概念的思想扩展到了相空间中的动力学由复杂全形对应关系演化的情况。为此,我们利用 Spanningsets 定义了全形对应的拓扑熵。然后,我们定义了一个定义在黎曼球上的实值连续函数的压力,并研究了关于H"{o}lder连续函数的Ruelle算子,然而它受限于Dinh-Sibony度量的支持。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Ruelle operator for holomorphic correspondences
In this paper, we extend the ideas of certain notions that one studies in thermodynamic formalism of maps to the context when the dynamics in the phase space evolves by complex holomorphic correspondences. Towards that end, we define the topological entropy of holomorphic correspondences using spanning sets. We then, define the pressure of a real-valued continuous function defined on the Riemann sphere and investigate the Ruelle operator with respect to the H\"{o}lder continuous function, however restricted on the support of the Dinh-Sibony measure.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信