利用图的膨胀动态拉普拉奇对随时间变化的网络进行频谱聚类

Gary Froyland, Manu Kalia, Peter Koltai
{"title":"利用图的膨胀动态拉普拉奇对随时间变化的网络进行频谱聚类","authors":"Gary Froyland, Manu Kalia, Peter Koltai","doi":"arxiv-2409.11984","DOIUrl":null,"url":null,"abstract":"Complex time-varying networks are prominent models for a wide variety of\nspatiotemporal phenomena. The functioning of networks depends crucially on\ntheir connectivity, yet reliable techniques for determining communities in\nspacetime networks remain elusive. We adapt successful spectral techniques from\ncontinuous-time dynamics on manifolds to the graph setting to fill this gap. We\nformulate an {\\it inflated dynamic Laplacian} for graphs and develop a spectral\ntheory to underpin the corresponding algorithmic realisations. We develop\nspectral clustering approaches for both multiplex and non-multiplex networks,\nbased on the eigenvectors of the inflated dynamic Laplacian and specialised\nSparse EigenBasis Approximation (SEBA) post-processing of these eigenvectors.\nWe demonstrate that our approach can outperform the Leiden algorithm applied\nboth in spacetime and layer-by-layer, and we analyse voting data from the US\nsenate (where senators come and go as congresses evolve) to quantify increasing\npolarisation in time.","PeriodicalId":501035,"journal":{"name":"arXiv - MATH - Dynamical Systems","volume":"15 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Spectral clustering of time-evolving networks using the inflated dynamic Laplacian for graphs\",\"authors\":\"Gary Froyland, Manu Kalia, Peter Koltai\",\"doi\":\"arxiv-2409.11984\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Complex time-varying networks are prominent models for a wide variety of\\nspatiotemporal phenomena. The functioning of networks depends crucially on\\ntheir connectivity, yet reliable techniques for determining communities in\\nspacetime networks remain elusive. We adapt successful spectral techniques from\\ncontinuous-time dynamics on manifolds to the graph setting to fill this gap. We\\nformulate an {\\\\it inflated dynamic Laplacian} for graphs and develop a spectral\\ntheory to underpin the corresponding algorithmic realisations. We develop\\nspectral clustering approaches for both multiplex and non-multiplex networks,\\nbased on the eigenvectors of the inflated dynamic Laplacian and specialised\\nSparse EigenBasis Approximation (SEBA) post-processing of these eigenvectors.\\nWe demonstrate that our approach can outperform the Leiden algorithm applied\\nboth in spacetime and layer-by-layer, and we analyse voting data from the US\\nsenate (where senators come and go as congresses evolve) to quantify increasing\\npolarisation in time.\",\"PeriodicalId\":501035,\"journal\":{\"name\":\"arXiv - MATH - Dynamical Systems\",\"volume\":\"15 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Dynamical Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.11984\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Dynamical Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.11984","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

复杂的时变网络是各种时空现象的重要模型。网络的功能在很大程度上取决于它们的连通性,然而确定时变网络中的群落的可靠技术却仍然难以捉摸。我们将流形上连续时间动力学中成功的谱技术应用到图环境中,以填补这一空白。我们为图提出了一个{it inflated dynamic Laplacian}(充气动态拉普拉奇),并发展了一种光谱理论来支持相应的算法实现。我们基于膨胀动态拉普拉奇的特征向量和对这些特征向量进行专门的稀疏特征基础逼近(SEBA)后处理,为多路复用和非多路复用网络开发了谱聚类方法。我们证明了我们的方法可以超越应用于时空和逐层的莱顿算法,我们还分析了美国参议院的投票数据(参议员随着国会的发展来来去去),以量化时间中不断增加的极化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Spectral clustering of time-evolving networks using the inflated dynamic Laplacian for graphs
Complex time-varying networks are prominent models for a wide variety of spatiotemporal phenomena. The functioning of networks depends crucially on their connectivity, yet reliable techniques for determining communities in spacetime networks remain elusive. We adapt successful spectral techniques from continuous-time dynamics on manifolds to the graph setting to fill this gap. We formulate an {\it inflated dynamic Laplacian} for graphs and develop a spectral theory to underpin the corresponding algorithmic realisations. We develop spectral clustering approaches for both multiplex and non-multiplex networks, based on the eigenvectors of the inflated dynamic Laplacian and specialised Sparse EigenBasis Approximation (SEBA) post-processing of these eigenvectors. We demonstrate that our approach can outperform the Leiden algorithm applied both in spacetime and layer-by-layer, and we analyse voting data from the US senate (where senators come and go as congresses evolve) to quantify increasing polarisation in time.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信