对其朱利亚集的作用为非极性的单态函数

Tao Chen, Yunping Jiang, Linda Keen
{"title":"对其朱利亚集的作用为非极性的单态函数","authors":"Tao Chen, Yunping Jiang, Linda Keen","doi":"arxiv-2409.12127","DOIUrl":null,"url":null,"abstract":"the action of the function on its Julia set is still ergodic if some, but not\nall of the asymptotic values land on infinity, and the remaining ones land on a\ncompact repeller. In this paper, we complete the characterization of ergodicity\nfor Nevanlinna functions but proving that if all the asymptotic values land on\ninfinity, then the Julia set is the whole sphere and the action of the map\nthere is non-ergodic.","PeriodicalId":501035,"journal":{"name":"arXiv - MATH - Dynamical Systems","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Meromorphic functions whose action on their Julia sets is Non-Ergodic\",\"authors\":\"Tao Chen, Yunping Jiang, Linda Keen\",\"doi\":\"arxiv-2409.12127\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"the action of the function on its Julia set is still ergodic if some, but not\\nall of the asymptotic values land on infinity, and the remaining ones land on a\\ncompact repeller. In this paper, we complete the characterization of ergodicity\\nfor Nevanlinna functions but proving that if all the asymptotic values land on\\ninfinity, then the Julia set is the whole sphere and the action of the map\\nthere is non-ergodic.\",\"PeriodicalId\":501035,\"journal\":{\"name\":\"arXiv - MATH - Dynamical Systems\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Dynamical Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.12127\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Dynamical Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.12127","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

如果部分渐近值落在无穷大上,而不是所有渐近值都落在无穷大上,并且剩余的渐近值落在一个紧密排斥者上,那么函数在其 Julia 集上的作用仍然是遍历性的。在本文中,我们完成了对 Nevanlinna 函数遍历性的表征,但证明了如果所有渐近值都落在无穷大上,那么 Julia 集就是整个球面,并且该球面的作用是非遍历性的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Meromorphic functions whose action on their Julia sets is Non-Ergodic
the action of the function on its Julia set is still ergodic if some, but not all of the asymptotic values land on infinity, and the remaining ones land on a compact repeller. In this paper, we complete the characterization of ergodicity for Nevanlinna functions but proving that if all the asymptotic values land on infinity, then the Julia set is the whole sphere and the action of the map there is non-ergodic.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信