对称区间交换变换无限扩展的遍历特性

Przemysław Berk, Frank Trujillo, Hao Wu
{"title":"对称区间交换变换无限扩展的遍历特性","authors":"Przemysław Berk, Frank Trujillo, Hao Wu","doi":"arxiv-2409.12168","DOIUrl":null,"url":null,"abstract":"We prove that skew products with the cocycle given by the function\n$f(x)=a(x-1/2)$ with $a\\neq 0$ are ergodic for every ergodic symmetric IET in\nthe base, thus giving the full characterization of ergodic extensions in this\nfamily. Moreover, we prove that under an additional natural assumption of\nunique ergodicity on the IET, we can replace $f$ with any differentiable\nfunction with a non-zero sum of jumps. Finally, by considering weakly mixing\nIETs instead of just ergodic, we show that the skew products with cocycle given\nby $f$ have infinite ergodic index.","PeriodicalId":501035,"journal":{"name":"arXiv - MATH - Dynamical Systems","volume":"14 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Ergodic properties of infinite extension of symmetric interval exchange transformations\",\"authors\":\"Przemysław Berk, Frank Trujillo, Hao Wu\",\"doi\":\"arxiv-2409.12168\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We prove that skew products with the cocycle given by the function\\n$f(x)=a(x-1/2)$ with $a\\\\neq 0$ are ergodic for every ergodic symmetric IET in\\nthe base, thus giving the full characterization of ergodic extensions in this\\nfamily. Moreover, we prove that under an additional natural assumption of\\nunique ergodicity on the IET, we can replace $f$ with any differentiable\\nfunction with a non-zero sum of jumps. Finally, by considering weakly mixing\\nIETs instead of just ergodic, we show that the skew products with cocycle given\\nby $f$ have infinite ergodic index.\",\"PeriodicalId\":501035,\"journal\":{\"name\":\"arXiv - MATH - Dynamical Systems\",\"volume\":\"14 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Dynamical Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.12168\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Dynamical Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.12168","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们证明,由函数$f(x)=a(x-1/2)$与$a/neq 0$给出的循环的斜积对于基内的每一个遍历对称IET都是遍历的,从而给出了这个家族中遍历扩展的全部特征。此外,我们还证明,在 IET 唯一遍历性的额外自然假设下,我们可以用任何具有非零跳跃之和的可微函数来代替 $f$。最后,通过考虑弱混合 IET 而不是仅仅考虑遍历性,我们证明了由 $f$ 给定循环的斜积具有无限遍历指数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Ergodic properties of infinite extension of symmetric interval exchange transformations
We prove that skew products with the cocycle given by the function $f(x)=a(x-1/2)$ with $a\neq 0$ are ergodic for every ergodic symmetric IET in the base, thus giving the full characterization of ergodic extensions in this family. Moreover, we prove that under an additional natural assumption of unique ergodicity on the IET, we can replace $f$ with any differentiable function with a non-zero sum of jumps. Finally, by considering weakly mixing IETs instead of just ergodic, we show that the skew products with cocycle given by $f$ have infinite ergodic index.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信