O. N. Kashinsky, A. S. Kurdyumov, A. E. Gorelikova
{"title":"倾角对管道中向上两相流的壁面剪应力的影响","authors":"O. N. Kashinsky, A. S. Kurdyumov, A. E. Gorelikova","doi":"10.1134/S1810232824030068","DOIUrl":null,"url":null,"abstract":"<p>An experimental study of gas liquid flow in an inclined circular pipe was performed. Experiments were performed for two values of superficial liquid velocities and different gas flow rates. The angle of pipe inclination varies from 10° to 80° with respect to horizontal position. Wall shear stress was measured in the apex point of the pipe using an electrodiffusional technique. A strong effect of pipe inclination on wall shear stress was shown. The highest values of wall shear stress corresponded to the angles of 40° to 60°. A significant increase of wall shear stress at low gas flow rates was detected.</p>","PeriodicalId":627,"journal":{"name":"Journal of Engineering Thermophysics","volume":"33 3","pages":"507 - 515"},"PeriodicalIF":1.3000,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Effect of Inclination Angle on Wall Shear Stress in Upward Two-Phase Flow in a Pipe\",\"authors\":\"O. N. Kashinsky, A. S. Kurdyumov, A. E. Gorelikova\",\"doi\":\"10.1134/S1810232824030068\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>An experimental study of gas liquid flow in an inclined circular pipe was performed. Experiments were performed for two values of superficial liquid velocities and different gas flow rates. The angle of pipe inclination varies from 10° to 80° with respect to horizontal position. Wall shear stress was measured in the apex point of the pipe using an electrodiffusional technique. A strong effect of pipe inclination on wall shear stress was shown. The highest values of wall shear stress corresponded to the angles of 40° to 60°. A significant increase of wall shear stress at low gas flow rates was detected.</p>\",\"PeriodicalId\":627,\"journal\":{\"name\":\"Journal of Engineering Thermophysics\",\"volume\":\"33 3\",\"pages\":\"507 - 515\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2024-09-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Engineering Thermophysics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1134/S1810232824030068\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Engineering Thermophysics","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1134/S1810232824030068","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
Effect of Inclination Angle on Wall Shear Stress in Upward Two-Phase Flow in a Pipe
An experimental study of gas liquid flow in an inclined circular pipe was performed. Experiments were performed for two values of superficial liquid velocities and different gas flow rates. The angle of pipe inclination varies from 10° to 80° with respect to horizontal position. Wall shear stress was measured in the apex point of the pipe using an electrodiffusional technique. A strong effect of pipe inclination on wall shear stress was shown. The highest values of wall shear stress corresponded to the angles of 40° to 60°. A significant increase of wall shear stress at low gas flow rates was detected.
期刊介绍:
Journal of Engineering Thermophysics is an international peer reviewed journal that publishes original articles. The journal welcomes original articles on thermophysics from all countries in the English language. The journal focuses on experimental work, theory, analysis, and computational studies for better understanding of engineering and environmental aspects of thermophysics. The editorial board encourages the authors to submit papers with emphasis on new scientific aspects in experimental and visualization techniques, mathematical models of thermophysical process, energy, and environmental applications. Journal of Engineering Thermophysics covers all subject matter related to thermophysics, including heat and mass transfer, multiphase flow, conduction, radiation, combustion, thermo-gas dynamics, rarefied gas flow, environmental protection in power engineering, and many others.