O. N. Fedyaeva, A. P. Grebennikov, A. A. Vostrikov
{"title":"高密度水氧流体氧化铋的特征","authors":"O. N. Fedyaeva, A. P. Grebennikov, A. A. Vostrikov","doi":"10.1134/S1810232824030020","DOIUrl":null,"url":null,"abstract":"<p>The paper presents the results of a study of oxidation of bulk bismuth samples by oxygen, water vapor, and water-oxygen fluid in a reactor heated to 873 K at a rate of 1 K/min with high-density reagents (<span>\\(\\rho_{{\\rm O_{2}}}\\le0.62\\)</span> and <span>\\(\\rho_{{\\rm H_{2}O}}\\le5.24\\)</span> mol/dm<sup>3</sup>). The results include temperature dependences of the pressure of the reaction mixtures. The rate of oxygen consumption is found from these dependences through the Redlich–Kwong equation of state. Formation of dense oxide film during the oxidation of bismuth in the O<sub>2</sub> environment was shown. No oxide formation was detected during treatment of bismuth with water vapor. The combined action of O<sub>2</sub> and H<sub>2</sub>O molecules enhances the oxidation of bismuth and leads to formation of oxides of different compositions and morphologies. At <span>\\(T>720\\)</span> K, the bismuth oxidation rate was observed to increase due to the higher pressure of saturated bismuth vapor.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Features of Oxidation of Bismuth by High-Density Water-Oxygen Fluid\",\"authors\":\"O. N. Fedyaeva, A. P. Grebennikov, A. A. Vostrikov\",\"doi\":\"10.1134/S1810232824030020\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The paper presents the results of a study of oxidation of bulk bismuth samples by oxygen, water vapor, and water-oxygen fluid in a reactor heated to 873 K at a rate of 1 K/min with high-density reagents (<span>\\\\(\\\\rho_{{\\\\rm O_{2}}}\\\\le0.62\\\\)</span> and <span>\\\\(\\\\rho_{{\\\\rm H_{2}O}}\\\\le5.24\\\\)</span> mol/dm<sup>3</sup>). The results include temperature dependences of the pressure of the reaction mixtures. The rate of oxygen consumption is found from these dependences through the Redlich–Kwong equation of state. Formation of dense oxide film during the oxidation of bismuth in the O<sub>2</sub> environment was shown. No oxide formation was detected during treatment of bismuth with water vapor. The combined action of O<sub>2</sub> and H<sub>2</sub>O molecules enhances the oxidation of bismuth and leads to formation of oxides of different compositions and morphologies. At <span>\\\\(T>720\\\\)</span> K, the bismuth oxidation rate was observed to increase due to the higher pressure of saturated bismuth vapor.</p>\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2024-09-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1134/S1810232824030020\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1134/S1810232824030020","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
摘要
摘要本文介绍了在一个加热到 873 K 的反应器中,氧气、水蒸气和水氧流体以 1 K/min 的速度和高密度试剂(\(\rrho_{/\rm O_{2}}}\le0.62\) and\(\rho_{/\rm H_{2}O}}\le5.24\) mol/dm3)对块状铋样品进行氧化的研究结果。结果包括反应混合物压力的温度依赖性。通过 Redlich-Kwong 状态方程,可以根据这些依赖关系求出氧气消耗率。结果表明,铋在氧气环境中氧化时会形成致密的氧化膜。用水蒸气处理铋时没有检测到氧化物的形成。O2 和 H2O 分子的共同作用增强了铋的氧化,并导致形成不同成分和形态的氧化物。在 \(T>720\) K 条件下,由于饱和铋蒸汽的压力较高,铋的氧化速率被观察到有所增加。
Features of Oxidation of Bismuth by High-Density Water-Oxygen Fluid
The paper presents the results of a study of oxidation of bulk bismuth samples by oxygen, water vapor, and water-oxygen fluid in a reactor heated to 873 K at a rate of 1 K/min with high-density reagents (\(\rho_{{\rm O_{2}}}\le0.62\) and \(\rho_{{\rm H_{2}O}}\le5.24\) mol/dm3). The results include temperature dependences of the pressure of the reaction mixtures. The rate of oxygen consumption is found from these dependences through the Redlich–Kwong equation of state. Formation of dense oxide film during the oxidation of bismuth in the O2 environment was shown. No oxide formation was detected during treatment of bismuth with water vapor. The combined action of O2 and H2O molecules enhances the oxidation of bismuth and leads to formation of oxides of different compositions and morphologies. At \(T>720\) K, the bismuth oxidation rate was observed to increase due to the higher pressure of saturated bismuth vapor.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.