卡兹丹-卢兹蒂格多项式的抛物递推和超立方分解

Maxim Gurevich, Chuijia Wang
{"title":"卡兹丹-卢兹蒂格多项式的抛物递推和超立方分解","authors":"Maxim Gurevich, Chuijia Wang","doi":"10.1007/s00029-024-00972-0","DOIUrl":null,"url":null,"abstract":"<p>We employ general parabolic recursion methods to demonstrate the recently devised hypercube formula for Kazhdan-Lusztig polynomials of <span>\\(S_n\\)</span>, and establish its generalization to the full setting of a finite Coxeter system through algebraic proof. We introduce procedures for positive decompositions of <i>q</i>-derived Kazhdan–Lusztig polynomials within this setting, that utilize classical Hecke algebra positivity phenomena of Dyer-Lehrer and Grojnowski–Haiman. This leads to a distinct algorithmic approach to the subject, based on induction from a parabolic subgroup. We propose suitable weak variants of the combinatorial invariance conjecture and verify their validity for permutation groups.</p>","PeriodicalId":501600,"journal":{"name":"Selecta Mathematica","volume":"29 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Parabolic recursions for Kazhdan–Lusztig polynomials and the hypercube decomposition\",\"authors\":\"Maxim Gurevich, Chuijia Wang\",\"doi\":\"10.1007/s00029-024-00972-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We employ general parabolic recursion methods to demonstrate the recently devised hypercube formula for Kazhdan-Lusztig polynomials of <span>\\\\(S_n\\\\)</span>, and establish its generalization to the full setting of a finite Coxeter system through algebraic proof. We introduce procedures for positive decompositions of <i>q</i>-derived Kazhdan–Lusztig polynomials within this setting, that utilize classical Hecke algebra positivity phenomena of Dyer-Lehrer and Grojnowski–Haiman. This leads to a distinct algorithmic approach to the subject, based on induction from a parabolic subgroup. We propose suitable weak variants of the combinatorial invariance conjecture and verify their validity for permutation groups.</p>\",\"PeriodicalId\":501600,\"journal\":{\"name\":\"Selecta Mathematica\",\"volume\":\"29 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Selecta Mathematica\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s00029-024-00972-0\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Selecta Mathematica","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s00029-024-00972-0","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们采用一般抛物线递推方法来证明最近设计的 \(S_n\) 的 Kazhdan-Lusztig 多项式的超立方公式,并通过代数证明将其推广到有限 Coxeter 系统的完整环境中。我们利用戴尔-雷勒(Dyer-Lehrer)和格罗伊诺斯基-海曼(Grojnowski-Haiman)的经典赫克代数正分解现象,引入了在此背景下对 q 派生卡兹丹-卢兹蒂格多项式进行正分解的程序。这导致了一种基于抛物面子群归纳的独特算法方法。我们提出了组合不变性猜想的合适弱变体,并验证了它们对置换群的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Parabolic recursions for Kazhdan–Lusztig polynomials and the hypercube decomposition

We employ general parabolic recursion methods to demonstrate the recently devised hypercube formula for Kazhdan-Lusztig polynomials of \(S_n\), and establish its generalization to the full setting of a finite Coxeter system through algebraic proof. We introduce procedures for positive decompositions of q-derived Kazhdan–Lusztig polynomials within this setting, that utilize classical Hecke algebra positivity phenomena of Dyer-Lehrer and Grojnowski–Haiman. This leads to a distinct algorithmic approach to the subject, based on induction from a parabolic subgroup. We propose suitable weak variants of the combinatorial invariance conjecture and verify their validity for permutation groups.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信